В1.9 Мальчик бросает в стену мяч со скоростью, модуль которой υ0 =10 м/с, под углом α = 45° к горизонту, стоя на расстоянии l = 4,0 м от стены. Удар мяча о стену упругий. Чтобы затем поймать отскочивший мяч, мальчик должен встать от стены на расстоянии... м.
Решение. Совместим начало координат c точкой О. Ось Ох направим горизонтально, а Оу вертикально вверх. Вдоль оси Ох мяч движется равномерно, со скоростью υ0х и равноускорено вдоль оси Оу с начальной скоростью υ0у и ускорением g. Выпишем начальные условия: х0 = -l, у0 = 0, υ0х = υ0·cosα, υ0y = υ0·sinα, ах = 0, ау = -g.
Координаты тела в момент времени t
\[ x=-l+{{\upsilon }_{0}}\cdot \cos \alpha \cdot t;\,\,\,\,\,y={{\upsilon }_{0}}\cdot \sin \alpha \cdot t-\frac{g\cdot {{t}^{2}}}{2} \]
В момент падения мяча x = -L, y = 0
\[ -L=-l+{{\upsilon }_{0}}\cdot \cos \alpha \cdot t;\,\,\,\,\,0={{\upsilon }_{0}}\cdot \sin \alpha \cdot t-\frac{g\cdot {{t}^{2}}}{2} \]
Выразим из второго уравнения t и подставим в первое
\[ t=\frac{2\cdot {{\upsilon }_{0}}\cdot \sin \alpha }{g};\,\,\,\,\,\,L=l-{{\upsilon }_{0}}\cdot \cos \alpha \cdot \frac{2\cdot {{\upsilon }_{0}}\cdot \sin \alpha }{g}=l-\frac{\upsilon _{0}^{2}\cdot \sin 2\alpha }{g} \]
L = -6 м. Мальчик должен встать от стены на расстоянии 6 м.
Ответ: 6 м