Последние сообщения

Страницы: 1 [2] 3 4 ... 10
11
Решение.
Объемную плотность энергии можно определить по формуле:
\[ w=\frac{dW}{dV}(1),w=\frac{1}{2}\cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{E}^{2}}(2). \]
Е – напряженность электрического поля шара, ε0 = 8,854∙10-12 Ф/м – электрическая постоянная.
dV – элемент объема, элемент объема выразим через радиус элементарного сферического слоя.
dV = 4∙π∙r2∙dr      (3).
1). Определим энергию электрического поля внутри шара.
Напряженность поля шара, вычисленная с помощью теоремы Остроградского –Гаусса в нашем случае (r < R): 
\[ \begin{align}
  & E=\frac{q\cdot r}{4\cdot \pi \cdot {{\varepsilon }_{0}}\cdot {{R}^{3}}},(r<R)(4). \\
 & dW=wdV,dW=\frac{\varepsilon \cdot {{\varepsilon }_{0}}\cdot {{E}^{2}}}{2}dV,dW=\frac{{{(q\cdot r)}^{2}}}{32\cdot {{\pi }^{2}}\cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{R}^{6}}}\cdot 4\cdot \pi \cdot {{r}^{2}}dr=\frac{{{q}^{2}}\cdot {{r}^{4}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{R}^{6}}}\cdot dr. \\
 & W=\int\limits_{0}^{R}{\frac{{{q}^{2}}\cdot {{r}^{4}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{R}^{6}}}dr}=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{R}^{6}}}\left. \cdot \frac{{{r}^{5}}}{5} \right|_{0}^{R}=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{R}^{6}}}\cdot (\frac{{{R}^{5}}}{5}-0)=\frac{{{q}^{2}}}{40\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}. \\
 & W=\frac{{{q}^{2}}}{40\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}. \\
\end{align}
 \]
2). Определим энергию электрического поля вне шара.
Напряженность поля шара, вычисленная с помощью теоремы Остроградского –Гаусса в нашем случае (r > R): 
\[ \begin{align}
  & E=\frac{q}{4\cdot \pi \cdot {{\varepsilon }_{0}}\cdot {{r}^{2}}},(r>R)(4). \\
 & dW=wdV,dW=\frac{\varepsilon \cdot {{\varepsilon }_{0}}\cdot {{E}^{2}}}{2}dV,dW=\frac{{{q}^{2}}}{32\cdot {{\pi }^{2}}\cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{r}^{4}}}\cdot 4\cdot \pi \cdot {{r}^{2}}dr=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{r}^{2}}}\cdot dr. \\
 & W=\int\limits_{R}^{\infty }{\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot \frac{1}{{{r}^{2}}}dr}=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}}\left. \cdot \frac{{{r}^{-2+1}}}{-2+1} \right|_{R}^{\infty }=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot (\frac{1}{R}-\frac{1}{\infty })=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}. \\
 & W=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}. \\
\end{align}
 \]
3). Определим изменение полной энергии поля при делении заряженного шара на два равных заряженных шара.
Определим полную энергию поля шара до деления
\[ {{W}_{1}}=\frac{{{q}^{2}}}{40\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}+\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}=\frac{6\cdot {{q}^{2}}}{40\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}. \]
Шар разделили на два равных шара, определим радиус каждого шара
\[ {{V}_{1}}=2\cdot {{V}_{2}},\frac{4}{3}\cdot \pi \cdot {{R}^{3}}=2\cdot \frac{4}{3}\cdot \pi \cdot {{r}^{3}},{{r}^{3}}=\frac{{{R}^{3}}}{2},r=\frac{R}{\sqrt[3]{2}}. \]
Определим полную энергию поля двух шаров после деления и изменение энергии
\[
\begin{align}
  & {{W}_{2}}=2\cdot \frac{6\cdot {{q}^{2}}\cdot \sqrt[3]{2}}{40\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}=\frac{3\cdot {{q}^{2}}\cdot 2\cdot \sqrt[3]{2}}{20\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}.\Delta W={{W}_{2}}-{{W}_{1}}.\Delta W=\frac{3\cdot {{q}^{2}}\cdot 2\cdot \sqrt[3]{2}}{20\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}-\frac{3\cdot {{q}^{2}}}{20\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}, \\
 & \Delta W=\frac{3\cdot {{q}^{2}}}{20\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}\cdot (2\cdot \sqrt[3]{2}-1). \\
 & \Delta W=1,52\cdot \frac{3\cdot {{q}^{2}}}{20\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot R}. \\
\end{align}
 \]
Оплатите 3,0 руб.

12
1. Электрический заряд равномерно распределён с поверхностной плотностью σ по поверхности плоской бесконечно длинной полосы шириной a. Найдите напряжённость электрического поля E на расстоянии z от средней линии полосы в направлении, перпендикулярном её плоскости. Рассмотрите случаи z>>a и z<<a. Сделать рисунок.
13
Платный новый вопрос / Два источника ЭДС
« Последний ответ от Антон Огурцевич 12 Июнь 2019, 14:11 »
Задача 1.49. В цепи (рис. 1.27) Е1 = 100 В, E2 = 35 В, а сопротивление R1 = R2 = R3 = R4 = 40 Ом, R5 = 30 Ом. Определить, при каком значении сопротивления R6 ток в ветви с источником ЭДС E2 будет равен нулю. Найти все токи. Сделать рисунок.
14
10. Имеется батарея с ЭДС, равной 100 В и внутренним сопротивлением r = 2 Ом. На нагрузке нужно получить напряжение U = 20 В, причём изменение сопротивления нагрузки R от 50 до 100 Ом должно вызывать изменение напряжения на ней не более чем на 2%. Составить простую схему для питания нагрузки и рассчитать параметры этой схемы. Сделать рисунок.
15
Определить концентрацию электронов в германии, содержащем NА = 5∙1015 см-3 при 30, 100, 150 и 300 К, если уровень акцепторов лежит на 0,01 эВ выше валентной зоны. Сделать рисунок.
16
8. Заряд q равномерно распределён по объёму шара с радиусом R. Определить: а) энергию электрического поля внутри шара; б) энергию поля вне шара; в) изменение полной энергии поля при делении заряженного шара на два равных заряженных шара. Сделать рисунок.
17
Термодинамика / Re: Один киломоль одноатомного газа
« Последний ответ от Сергей 07 Июнь 2019, 17:16 »
Решение.
Покажем рисунок. Определим температуру Т2, при изохорном процессе выполняется условие:
\[ \frac{{{p}_{1}}}{{{T}_{2}}}=\frac{2\cdot {{p}_{1}}}{{{T}_{1}}},{{T}_{2}}={{T}_{1}}\cdot \frac{{{p}_{1}}}{2\cdot {{p}_{1}}},{{T}_{2}}=\frac{{{T}_{1}}}{2},{{T}_{2}}=\frac{273+27}{2},{{T}_{2}}=150. \]
Работа, совершённая этим газом при переходе его из начального состояния в конечное определяется по формуле:
А = А12 + А23.
А12 = 0, так как процесс 1→2 – изохорный. Процесс 2→3 – изобарный. Работа газа при изобарном процессе определяется по формуле:
\[
\begin{align}
  & {{A}_{23}}=\nu \cdot R\cdot ({{T}_{1}}-{{T}_{2}}),{{A}_{23}}={{10}^{3}}\cdot 8,31\cdot (300-150)=1246,5\cdot {{10}^{3}}. \\
 & A=0+1246,5\cdot {{10}^{3}}=1246,5\cdot {{10}^{3}}. \\
\end{align}
 \]
Приращение внутренней энергии газа при переходе его из начального состояния в конечное определяется по формуле:
\[ \begin{align}
  & \Delta U=\Delta {{U}_{12}}+\Delta {{U}_{23}}.\Delta {{U}_{12}}=\frac{3}{2}\cdot \nu \cdot R\cdot ({{T}_{2}}-{{T}_{1}}),\Delta {{U}_{12}}=\frac{3}{2}\cdot 1\cdot {{10}^{3}}\cdot 8,31\cdot (150-300)=-1869,75\cdot {{10}^{3}}. \\
 & \Delta {{U}_{23}}=\frac{3}{2}\cdot \nu \cdot R\cdot ({{T}_{1}}-{{T}_{2}}),\Delta {{U}_{23}}=\frac{3}{2}\cdot 1\cdot {{10}^{3}}\cdot 8,31\cdot (300-150)=1869,75\cdot {{10}^{3}}. \\
 & \Delta U=-1869,75\cdot {{10}^{3}}+1869,75\cdot {{10}^{3}}=0. \\
\end{align} \]
Количество теплоты при переходе его из начального состояния в конечное определяется по формуле:
\[ \begin{align}
  & Q={{Q}_{12}}+{{Q}_{23}},{{Q}_{12}}=\Delta {{U}_{12}}+{{A}_{12}},\Delta {{U}_{12}}=-1869,75\cdot {{10}^{3}}, \\
 & {{A}_{12}}=0,{{Q}_{12}}=-1869,75\cdot {{10}^{3}}+0,{{Q}_{12}}=-1869,75\cdot {{10}^{3}}. \\
 & {{Q}_{23}}=\Delta {{U}_{23}}+{{A}_{23}},\Delta {{U}_{23}}=1869,75\cdot {{10}^{3}},{{A}_{23}}=1246,5\cdot {{10}^{3}}, \\
 & {{Q}_{23}}=1869,75\cdot {{10}^{3}}+1246,5\cdot {{10}^{3}},{{Q}_{23}}=3116,25\cdot {{10}^{3}}. \\
 & Q=-1869,75\cdot {{10}^{3}}+3116,25\cdot {{10}^{3}}=1246,5\cdot {{10}^{3}}. \\
\end{align} \]
Ответ: 1246,5∙103  Дж, 1246,5∙103  Дж, 0.
18
51) Один киломоль одноатомного газа, находящегося при температуре 27°С, охлаждается изохорически, вследствие чего его давление уменьшается в два раза. Затем газ изобарически расширяется так, что в конечном состоянии его температура равна первоначальной. Изобразить процесс на диаграмме «давление – объём». Вычислить количество теплоты, поглощённой газом, произведённую им работу и приращение внутренней энергии газа. Сделать рисунок.
19
Динамика твердых тел / Re: Найти ускорение груза
« Последний ответ от Сергей 05 Июнь 2019, 13:52 »
Решение. По условию задачи известны радиусы ступеней блока R и 2∙R , радиус блока 3∙R. Покажем силы которые действуют на груз А и ускорение с которым он движется. Выразим силу натяжения нити, на которой находится груз
\[ \begin{align}
  & \vec{F}=m\cdot \vec{a},m\cdot \vec{g}+{{{\vec{F}}}_{H1}}=m\cdot \bar{a}. \\
 & Oy:m\cdot g-{{F}_{H1}}=m\cdot a,{{F}_{H1}}=m\cdot g-m\cdot a(1). \\
\end{align}
 \]
Запишем уравнение вращательного движения блока
\[ J\cdot \vec{\varepsilon }={{\vec{M}}_{0}}+{{\vec{M}}_{1}}+{{\vec{M}}_{2}}\,(2). \]
М0 – момент силы тяжести блока, М1 – момент силы натяжения груза, М2 – момент силы натяжения блока, ε – угловое ускорение вращения блока.
\[ \varepsilon =\frac{a}{R+2\cdot R},\varepsilon =\frac{a}{3\cdot R}(3). \]
За ось вращения примем прямую проходящую через точку О, М2 =0. Моменты сил, которые вращают, блок против часовой стрелки берем со знаком плюс.
Момент инерции блока относительно точки О определим по теореме Штейнера
\[ \begin{align}
  & J=I+{{m}_{0}}\cdot {{R}^{2}}(4).(I\text{ }+\text{ }{{m}_{0}}\cdot {{R}^{2}})\cdot \frac{a}{3\cdot R}=-{{m}_{0}}\cdot g\cdot R+{{F}_{H1}}\cdot (R+2\cdot R), \\
 & (I\text{ }+\text{ }{{m}_{0}}\cdot {{R}^{2}})\cdot \frac{a}{3\cdot R}=-{{m}_{0}}\cdot g\cdot R+m\cdot (g-a)\cdot 3\cdot R,(I\text{ }+\text{ }{{m}_{0}}\cdot {{R}^{2}})\cdot \frac{a}{3\cdot R}=-{{m}_{0}}\cdot g\cdot R+m\cdot g\cdot 3\cdot R-m\cdot a\cdot 3\cdot R. \\
 & (I\text{ }+\text{ }{{m}_{0}}\cdot {{R}^{2}})\cdot \frac{a}{3\cdot R}+m\cdot a\cdot 3\cdot R=-{{m}_{0}}\cdot g\cdot R+m\cdot g\cdot 3\cdot R,a\cdot (\frac{(I\text{ }+\text{ }{{m}_{0}}\cdot {{R}^{2}})}{3\cdot R}+m\cdot 3\cdot R)=g\cdot R\cdot (-{{m}_{0}}+3\cdot m), \\
 & a\cdot (\frac{I\text{ }+\text{ }{{m}_{0}}\cdot {{R}^{2}}+m\cdot 9\cdot {{R}^{2}}}{3\cdot R})=g\cdot R\cdot (-{{m}_{0}}+3\cdot m),\,a\cdot (I\text{ }+\text{ }{{m}_{0}}\cdot {{R}^{2}}+m\cdot 3\cdot {{R}^{2}})=3\cdot g\cdot {{R}^{2}}\cdot (-{{m}_{0}}+3\cdot m), \\
 & a=\frac{3\cdot g\cdot {{R}^{2}}\cdot (-{{m}_{0}}+3\cdot m)}{I\text{ }+\text{ }{{m}_{0}}\cdot {{R}^{2}}+m\cdot 9\cdot {{R}^{2}}}. \\
\end{align}
 \]
20
Решение.
Покажем рисунок. На проводник действует сила тяжести и сила Ампера. Направление силы Ампера определим по правилу левой руки. Для решения задачи используем второй закон Ньютона
\[ \begin{align}
  & \vec{F}=m\cdot \vec{a},m\cdot \vec{g}+{{{\vec{F}}}_{A}}=m\cdot \vec{a}. \\
 & Oy:\,m\cdot g-{{F}_{A}}=m\cdot a(1). \\
 & m=\rho \cdot V(2),V=S\cdot l(3),{{F}_{A}}=I\cdot B\cdot l\cdot \sin \alpha (4),\,\alpha =\frac{\pi }{2},\sin \alpha =1, \\
 & \rho \cdot S\cdot l\cdot g-I\cdot B\cdot l=\rho \cdot S\cdot l\cdot a,\rho \cdot S\cdot g-I\cdot B=\rho \cdot S\cdot a, \\
 & I\cdot B=\rho \cdot S\cdot g-\rho \cdot S\cdot a,B=\frac{\rho \cdot S\cdot (g-a)}{I}(5). \\
 & B=\frac{8,9\cdot {{10}^{3}}\cdot 2\cdot {{10}^{-6}}\cdot (9,8-9,6)}{10}=0,356\cdot {{10}^{-3}}. \\
\end{align} \]
Ответ: 0,356 мТл.
Страницы: 1 [2] 3 4 ... 10