Автор Тема: Брусок тащат с постоянной скоростью по горизонтальной поверхности  (Прочитано 496 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
Брусок тащат с постоянной скоростью по горизонтальной поверхности, при этом сила направлена вдоль поверхности. С каким ускорением будет двигаться брусок, если тащить его с такой же по величине силой, но направленной под углом φ к поверхности? Коэффициент трения скольжения μ. Сделать рисунок.

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Решение.
1. Брусок тащат с постоянной скоростью по горизонтальной поверхности, при этом сила направлена вдоль поверхности, определим эту силу.
Используем второй закон Ньютона.
Покажем силы, которые действуют на брусок, учитываем, что брусок движется равномерно (Рис. 1)
\[ {{\vec{F}}_{mp}}+m\cdot \vec{g}+\vec{N}+\vec{F}=0. \]
Найдем проекции на ось Ох и ось Оу:
\[ \ Ox:F-{{F}_{mp}}=0\ \ \ (1),\ Oy:N-m\cdot g=0\ \ \ (2). \]
По определению сила трения движущегося тела находится по формуле:
\[ {{F}_{mp}}=\mu \cdot N\ \ \ (3). \]
Из (2) выразим N и подставим в (3), (3) подставим в (1) и выразим силу, которая действует на брусок
\[ {{F}_{mp}}=\mu \cdot m\cdot g,F=\ \mu \cdot m\cdot g\ \ (4). \]
2. Определим, с каким ускорением будет двигаться брусок, если тащить его с такой же по величине силой, но направленной под углом φ к поверхности.
Используем второй закон Ньютона.
Покажем силы, которые действуют на брусок и ускорение (Рис. 2)
\[ {{\vec{F}}_{mp}}+m\cdot \vec{g}+\vec{N}+\vec{F}=m\cdot \vec{a}. \]
Найдем проекции на ось Ох и ось Оу, определим ускорение:
\[ \begin{align}
  & \ Ox:F\cdot \cos \varphi -{{F}_{mp}}=m\cdot a\ \ \ (1),\ Oy:N+F\cdot \sin \varphi -m\cdot g=0\ \ \ (2). \\
 & {{F}_{mp}}=\mu \cdot N,N=m\cdot g-F\cdot \sin \varphi ,{{F}_{mp}}=\mu \cdot m\cdot g-\mu \cdot F\cdot \sin \varphi , \\
 & a=\frac{F\cdot \cos \varphi -\mu \cdot m\cdot g+\mu \cdot F\cdot \sin \varphi }{m}. \\
 & a=\frac{\mu \cdot m\cdot g\cdot \cos \varphi -\mu \cdot m\cdot g+\mu \cdot \mu \cdot m\cdot g\cdot \sin \varphi }{m},a=\mu \cdot g\cdot \cos \varphi -\mu \cdot g+{{\mu }^{2}}\cdot g\cdot \sin \varphi , \\
 & a=\mu \cdot g\cdot (\cos \varphi +\mu \cdot \sin \varphi -1). \\
\end{align} \]

« Последнее редактирование: 07 Сентября 2019, 06:51 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24