Задачи и вопросы по физике > Термодинамика

Молекулярная физика и термодинамика

(1/2) > >>

Антон Огурцевич:
Задача 3. Молекулярная физика и термодинамика
На рисунке 3.7 показан цикл, осуществляемый со смесью, состоящей из газа 1 массой m1 и газа 2 массой m2, которые считаются идеальными. Цикл состоит из четырех процессов: а – изотерма, b – изобара, с – изохора, d – адиабата. Цикл показан на (PV)-диаграмме, значения Р1, Р2 и V1 заданы в таблице. Выполнить следующие задания:
1. Найти кажущуюся молярную массу смеси и эквивалентное число степеней свободы молекул смеси, а также показатель адиабаты смеси.
2. Записать уравнение всех процессов цикла и в соответствии с видом цикла найти или задать недостающие значения объема и давление в остальных угловых точках цикла.
3. Найти парциальные давления компонентов во всех угловых точках цикла.
4. Найти термодинамические температуры во всех угловых точках цикла и построить примерные графики цикла на (P,Т) и (V,Т)-диаграммах.
5. Найти изменения внутренней энергии, работу газа и количество теплоты, полученное газом во всех процессах цикла.
6. Вычислить КПД цикла и сравнить его с КПД цикла Карно, для которого температура нагревателя равна максимальной температуре в цикле, а температура охладителя – минимальной.
7. Найти КПД холодильной машины, работающей по циклу, проходимому против часовой стрелки.
8. Найти средние, наиболее вероятные и среднеквадратичные скорости компонентов в каком-нибудь (по Вашему выбору) состоянии газа.
9. Какова была бы средняя длина свободного пробега молекул и среднее число столкновений за 1 с в состоянии 1, если бы в сосуде находился только газ 1 массой (m1+m2)? Каковы были бы при этом коэффициенты диффузии, вязкости и теплопроводности?
10. Как изменилось бы давление смеси в состоянии 4, если бы 50% молекул газа 2 диссоциировали на атомы? Считать процесс диссоциации изотермическим.
11. Найти количество молекул газа 1 в состоянии 4, чьи скорости отличаются от наиболее вероятной на 0,1%, а также аналогичную величину для средней скорости.
12. Считая, что сосуд имеет форму вертикального цилиндра диаметром 5 см, найти насколько отличается количество молекул газа 1 в состоянии 4 в слое толщиной 1 мм вблизи дна от количества молекул в таком же слое вблизи крышки сосуда.
Численные значения даны в таблице 3. Сделать рисунок.

Сергей:
1. Найти кажущуюся молярную массу смеси и эквивалентное число степеней свободы молекул смеси, а также показатель адиабаты смеси.
Решение. М(Аr) = 40∙10-3 кг/моль, М(О2) = 32∙10-3 кг/моль.
Кажущуюся молярную массу смеси определим из закона Дальтона: давление газовой смеси равно сумме давлений компонентов смеси\[ \begin{align}
  & p={{p}_{1}}+{{p}_{2}}(1),p\cdot V=\nu \cdot R\cdot T(2),{{p}_{1}}\cdot V={{\nu }_{1}}\cdot R\cdot T(3),{{p}_{2}}\cdot V={{\nu }_{2}}\cdot R\cdot T(4), \\
 & \nu \cdot R\cdot T={{\nu }_{1}}\cdot R\cdot T+{{\nu }_{2}}\cdot R\cdot T,\nu ={{\nu }_{1}}+{{\nu }_{2}},\frac{{{m}_{1}}+{{m}_{2}}}{\left\langle M \right\rangle }=\frac{{{m}_{1}}}{{{M}_{1}}}+\frac{{{m}_{2}}}{{{M}_{2}}},\left\langle M \right\rangle =\frac{{{m}_{1}}+{{m}_{2}}}{\frac{{{m}_{1}}}{{{M}_{1}}}+\frac{{{m}_{2}}}{{{M}_{2}}}}(5). \\
 & \left\langle M \right\rangle =\frac{40\cdot {{10}^{-3}}+48\cdot {{10}^{-3}}}{\frac{40\cdot {{10}^{-3}}}{40\cdot {{10}^{-3}}}+\frac{48\cdot {{10}^{-3}}}{32\cdot {{10}^{-3}}}}=35,2\cdot {{10}^{-3}}. \\
\end{align} \]Эквивалентное число степеней свободы, определится из формулы приращения внутренней энергии изохорного нагрева. Это приращение естественно равно сумме приращений внутренних энергий составляющих смесь газов:\[ \begin{align}
  & \Delta U={{U}_{1}}+{{U}_{2}}(1),\Delta U=\frac{i}{2}\cdot \nu \cdot R\cdot \Delta T(2),{{U}_{1}}=\frac{{{i}_{1}}}{2}\cdot {{\nu }_{1}}\cdot R\cdot \Delta T(3),{{U}_{2}}=\frac{{{i}_{2}}}{2}\cdot {{\nu }_{2}}\cdot R\cdot \Delta T(4), \\
 & \frac{i}{2}\cdot \nu \cdot R\cdot \Delta T=\frac{{{i}_{1}}}{2}\cdot {{\nu }_{1}}\cdot R\cdot \Delta T+\frac{{{i}_{2}}}{2}\cdot {{\nu }_{2}}\cdot R\cdot \Delta T,\frac{i}{2}\cdot \nu =\frac{{{i}_{1}}}{2}\cdot {{\nu }_{1}}+\frac{{{i}_{2}}}{2}\cdot {{\nu }_{2}},i=\frac{{{i}_{1}}\cdot {{\nu }_{1}}+{{i}_{2}}\cdot {{\nu }_{2}}}{\nu }(5), \\
 & \nu =\frac{{{m}_{1}}+{{m}_{2}}}{\left\langle M \right\rangle },{{\nu }_{1}}=\frac{{{m}_{1}}}{{{M}_{1}}},{{\nu }_{2}}=\frac{{{m}_{2}}}{{{M}_{2}}},\nu =\frac{40\cdot {{10}^{-3}}+48\cdot {{10}^{-3}}}{35,2\cdot {{10}^{-3}}}=2,5,\nu1 =\frac{40\cdot {{10}^{-3}}}{40\cdot {{10}^{-3}}}=1, \\
 & \nu2 =\frac{48\cdot {{10}^{-3}}}{32\cdot {{10}^{-3}}}=1,5.\,i=\frac{3\cdot 1+5\cdot 1,5}{2,5}=4,2. \\
\end{align} \]Аргон газ одноатомный, если газ одноатомный i1 = 3, молекула кислорода двухатомная, i2 = 5.
Показатель адиабаты – это отношение молярных теплоемкостей нагрева при постоянном давлении и постоянном объеме:\[ \begin{align}
  & \gamma =\frac{{{C}_{p}}}{{{C}_{V}}}\ (1),{{C}_{p}}={{C}_{V}}+R,\gamma =\frac{{{C}_{V}}+R}{{{C}_{V}}}(2),\gamma =1+\frac{R}{{{C}_{V}}},{{C}_{V}}=\frac{i}{2}\cdot R(3),\gamma =\frac{i+2}{i}(4). \\
 & \gamma =\frac{4,2+2}{4,2}=1,476. \\
\end{align} \]М = 35,2∙10-3 кг/моль, i = 4,2, γ = 1,476.

Сергей:
2. Записать уравнение всех процессов цикла и в соответствии с видом цикла найти или задать недостающие значения объема и давление в остальных угловых точках цикла.
Решение.
Зададим недостающее значение объема в точке 4, например, V4 = 10 л.
1 → 2 – адиабатный процесс Q = 0, р∙Vγ = соnst.\[ {{p}_{1}}\cdot V_{1}^{\gamma }={{p}_{2}}\cdot V_{2}^{\gamma },V_{2}^{\gamma }=\frac{{{p}_{1}}\cdot V_{1}^{\gamma }}{{{p}_{2}}},{{V}_{2}}={{V}_{1}}\cdot \sqrt[\gamma ]{\frac{{{p}_{1}}}{{{p}_{2}}}}(1).{{V}_{2}}=25\cdot {{10}^{-3}}\cdot \sqrt[1,476]{\frac{450\cdot {{10}^{3}}}{250\cdot {{10}^{3}}}}=32,742\cdot {{10}^{-3}}. \]3 → 4 – изотермический процесс, Т = соnst, р∙V  = соnst.\[ {{p}_{1}}\cdot {{V}_{4}}={{p}_{3}}\cdot {{V}_{3}},{{p}_{3}}=\frac{{{p}_{1}}\cdot {{V}_{4}}}{{{V}_{3}}}.{{p}_{3}}=\frac{450\cdot {{10}^{3}}\cdot 10\cdot {{10}^{-3}}}{32,742\cdot {{10}^{-3}}}=137,44\cdot {{10}^{3}}. \]2 → 3 – изохорный процесс V = соnst, р/Т = соnst.
V2 = V3.4 → 1 – изобарный процесс, р = соnst, V /Т = соnst.
р1 = 450∙103 Па, р2 = 250∙103 Па, р3 = 137∙103 Па, р4 = 450∙103 Па.
V1 = 25∙10-3 м3, V4 = 10∙10-3 м3, V2 = 32,742∙10-3 м3, V3 = 32,742∙10-3 м3.

Сергей:
4. Найти термодинамические температуры во всех угловых точках цикла и построить примерные графики цикла на (P,Т) и (V,Т)-диаграммах.
Решение. Запишем уравнение состояния газа
\[ \begin{align}
  & p\cdot V=\nu \cdot R\cdot T,T=\frac{p\cdot V}{\nu \cdot R},{{T}_{1}}=\frac{{{p}_{1}}\cdot {{V}_{1}}}{\nu \cdot R},{{T}_{1}}=\frac{450\cdot {{10}^{3}}\cdot 25\cdot {{10}^{-3}}}{2,5\cdot 8,31}=541,5. \\
 & {{T}_{2}}=\frac{{{p}_{2}}\cdot {{V}_{2}}}{\nu \cdot R},{{T}_{2}}=\frac{250\cdot {{10}^{3}}\cdot 32,742\cdot {{10}^{-3}}}{2,5\cdot 8,31}=394. \\
 & {{T}_{3}}=\frac{{{p}_{3}}\cdot {{V}_{3}}}{\nu \cdot R},{{T}_{3}}=\frac{137,44\cdot {{10}^{3}}\cdot 32,742\cdot {{10}^{-3}}}{2,5\cdot 8,31}=216,6. \\
 & {{T}_{4}}={{T}_{3}}=216,6. \\
\end{align} \]Т1 = 541,5 К, Т2 = 394 К, Т3 = 216,6 К, Т4 = 216,6 К.

Сергей:
3. Найти парциальные давления компонентов во всех угловых точках цикла.
Давление каждой из компонент смеси определим используя уравнение Менделева – Клапейрона, которое записано для угловых точек цикла
\[ \begin{align}
  & p\cdot V=\nu \cdot R\cdot T,p=\frac{\nu \cdot R\cdot T}{V},{{\nu }_{1}}=\frac{{{m}_{1}}}{{{M}_{1}}},{{\nu }_{2}}=\frac{{{m}_{2}}}{{{M}_{2}}},{{\nu }_{1}}=\frac{40\cdot {{10}^{-3}}}{40\cdot {{10}^{-3}}}=1,{{\nu }_{2}}=\frac{48\cdot {{10}^{-3}}}{32\cdot {{10}^{-3}}}=1,5.\, \\
 & 1.{{p}_{1}}(Ar)=\frac{{{\nu }_{1}}\cdot R\cdot {{T}_{1}}}{{{V}_{1}}},{{p}_{1}}({{O}_{2}})=\frac{{{\nu }_{2}}\cdot R\cdot {{T}_{1}}}{{{V}_{1}}},{{p}_{1}}(Ar)=\frac{1\cdot 8,31\cdot 541,5}{25\cdot {{10}^{-3}}}=179995. \\
 & {{p}_{1}}({{O}_{2}})=\frac{1,5\cdot 8,31\cdot 541,5}{25\cdot {{10}^{-3}}}=269992. \\
 & 2.{{p}_{2}}(Ar)=\frac{{{\nu }_{1}}\cdot R\cdot {{T}_{2}}}{{{V}_{2}}},{{p}_{2}}({{O}_{2}})=\frac{{{\nu }_{2}}\cdot R\cdot {{T}_{2}}}{{{V}_{2}}},{{p}_{2}}(Ar)=\frac{1\cdot 8,31\cdot 394}{32,742\cdot {{10}^{-3}}}=99998,2. \\
 & {{p}_{2}}({{O}_{2}})=\frac{1,5\cdot 8,31\cdot 394}{32,742\cdot {{10}^{-3}}}=149997,25. \\
\end{align} \]\[ \begin{align}
  & 3.{{p}_{3}}(Ar)=\frac{{{\nu }_{1}}\cdot R\cdot {{T}_{1}}}{{{V}_{1}}},{{p}_{3}}({{O}_{2}})=\frac{{{\nu }_{2}}\cdot R\cdot {{T}_{1}}}{{{V}_{1}}},{{p}_{3}}(Ar)=\frac{1\cdot 8,31\cdot 216,6}{32,742\cdot {{10}^{-3}}}=54974. \\
 & {{p}_{3}}({{O}_{2}})=\frac{1,5\cdot 8,31\cdot 216,6}{32,742\cdot {{10}^{-3}}}=82460. \\
 & 4.{{p}_{4}}(Ar)=\frac{{{\nu }_{1}}\cdot R\cdot {{T}_{2}}}{{{V}_{2}}},{{p}_{4}}({{O}_{2}})=\frac{{{\nu }_{2}}\cdot R\cdot {{T}_{2}}}{{{V}_{2}}},{{p}_{4}}(Ar)=\frac{1\cdot 8,31\cdot 216,6}{10\cdot {{10}^{-3}}}=179995. \\
 & {{p}_{4}}({{O}_{2}})=\frac{1,5\cdot 8,31\cdot 216,6}{10\cdot {{10}^{-3}}}=269992. \\
\end{align} \]

Навигация

[0] Главная страница сообщений

[#] Следующая страница

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Перейти к полной версии