Автор Тема: Два точечных груза  (Прочитано 8668 раз)

0 Пользователей и 1 Гость просматривают эту тему.

kitten19939

  • Гость
Два точечных груза
« : 04 Апреля 2010, 13:16 »
Два точечных груза с массами m1 и m2 соединены невесомым жестким стержнем длиной l. Система может вращаться в вертикальной плоскости относительно горизонтальной оси, проходящей через середину стержня. Стержень приводят в горизонтальное положение и отпускают. С какой силой стержень действует на ось в начальный момент? Каково угловое ускорение стержня в момент, когда он образует угол α с вертикалью?
« Последнее редактирование: 07 Января 2011, 18:43 от alsak »

Оффлайн alsak

  • Ветеран
  • *****
  • Сообщений: 1976
  • Рейтинг: +8/-0
  • Не делает ошибок тот, кто ничего не делает
Пусть m2 > m1. Тогда стержень начнет вращаться по часовой стрелке относительно точки O под действием вращающего момента M = m2gl1m1gl1, где l1 = AO = OB = l/2 (рис. 1).
Момент инерции грузов I = (m2 + m1)⋅l12. Найдем угловое ускорение в начальный момент времени:

\[
\epsilon_0 = \frac{M}{I} = \frac{(m_2-m_1) \cdot g \cdot l_1}
{(m_2+m_1) \cdot l_1^2} =
\frac{(m_2-m_1) \cdot 2g}{(m_2+m_1) \cdot l}. \]

Аналогично найдем угловое ускорение в момент, когда стержень образует угол α с вертикалью, только плечи сил тяжести будут равны l2 = A1O = B1O = l1⋅sin α (рис. 2):

\[
\epsilon_1 = \frac{(m_2-m_1) \cdot g \cdot l_2}{(m_2+m_1) \cdot l_1^2} =
\frac{(m_2-m_1) \cdot 2g \cdot \sin \alpha}{(m_2+m_1) \cdot l}. \]

Для нахождения силы, с которой стержень действует на ось в начальный момент времени, запишем второй закон Ньютона для центра масс системы (точка С) в проекциях на ось Y (рис. 3):
 
–(m1 + m2)⋅ac = N – (m1 + m2)⋅g,

где ускорение центра масс в начальный момент времени является тангенциальным ускорением системы, т.е. ac = ε0r, а r — радиус вращения центра масс, который равен:

\[
r=OC=\frac{-m_1 \cdot l_1 + m_2 \cdot l_1}{m_1+m_2} =
\frac{(m_2 - m_1) \cdot l}{2(m_1+m_2)}. \]

В итоге получаем

\[
a_c = \frac{(m_2-m_1) \cdot 2g}{(m_2+m_1) \cdot l} \cdot
\frac{(m_2 - m_1) \cdot l}{2(m_1+m_2)}=
\frac{(m_2-m_1)^2}{(m_2+m_1)^2} \cdot g, \quad
N=(m_2+m_1) \cdot (g-a_c)= \frac{4m_1 \cdot m_2}{m_2+m_1} \cdot g. \]

« Последнее редактирование: 05 Апреля 2010, 17:50 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24