Автор Тема: Где надо установить лампу?  (Прочитано 5971 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
Где надо установить лампу?
« : 25 Января 2016, 14:51 »
Над центром круглого стола висит лампа, которую можно перемещать вверх и вниз. Где надо установить лампу, чтобы получить максимальную освещённость на краю стола диаметром 2 м? Сделать рисунок.

Оффлайн Виктор

  • Ветеран
  • *****
  • Сообщений: 526
  • Рейтинг: +0/-0
  • сделать можно многое, но времени так мало...
Re: Где надо установить лампу?
« Ответ #1 : 27 Января 2016, 13:30 »
Решение: Освещённость поверхности рассчитывается по формуле
\[ E=\frac{I}{{{r}^{2}}}\cdot \cos \alpha , \]
где I - сила света лампы, r – расстояние до точки поверхности (расстояние до края стола), α – угол падения лучей. Пусть h – высота лампы над столом, тогда, воспользовавшись теоремой Пифагора и понятием косинуса (см. рис.)
\[ r=\sqrt{{{h}^{2}}+{{\left( \frac{D}{2} \right)}^{2}}},\text{        }\cos \alpha =\frac{h}{r}=\frac{h}{\sqrt{{{h}^{2}}+{{\frac{D}{4}}^{2}}}}. \]
Таким образом зависимость освещённости от высоты лампы
\[ E=\frac{I}{{{\left( \sqrt{{{h}^{2}}+{{\frac{D}{4}}^{2}}} \right)}^{2}}}\cdot \frac{h}{\sqrt{{{h}^{2}}+{{\frac{D}{4}}^{2}}}}=\frac{I\cdot h}{{{\left( {{h}^{2}}+{{\frac{D}{4}}^{2}} \right)}^{\frac{3}{2}}}}. \]
Исследуем функцию на максимум (возьмём первую производную, приравняем её к нулю и определим точку экстремума, h больше нуля и для удобства расчётов подставим диаметр стола D = 2 м)
\[ {E}'={{\left( \frac{I\cdot h}{{{\left( {{h}^{2}}+1 \right)}^{\frac{3}{2}}}} \right)}^{\prime }}=\frac{I\cdot \left( 2\cdot {{h}^{2}}-1 \right)}{{{\left( {{h}^{2}}+1 \right)}^{\frac{5}{2}}}}. \]
Знаменатель в ноль не обращается, тогда
\[ 2\cdot {{h}^{2}}-1=0,\text{          }2\cdot {{h}^{2}}=1,\text{              }h=\frac{1}{\sqrt{2}}=0,71. \]
Ответ: h = 71 см.
« Последнее редактирование: 06 Февраля 2016, 07:39 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24