Автор Тема: Стальной шарик диаметром  (Прочитано 1574 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2400
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
Стальной шарик диаметром
« : 07 Января 2016, 19:20 »
Стальной шарик диаметром d = 4 мм падает в сосуде с жидкостью с постоянной скоростью υ = 0,2 м/с. Найти динамическую вязкость жидкости, если её плотность ρ = 1,2∙103 кг/м3. Сделать рисунок.
« Последнее редактирование: 07 Января 2016, 20:48 от Сергей »

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Re: Стальной шарик диаметром
« Ответ #1 : 07 Января 2016, 20:51 »
Решение. Покажем силы которые действуют на стальной шарик при его движении в сосуде с жидкостью. 
ρс = 7,8∙103 кг/м3 – плотность стали.
  Стокс на основании теоретических исследований установил, что если шарик движется в жидкости, не вызывая при своем движении никаких завихрений, то сила сопротивления движения шарика определяется формулой
FТр = 6∙π∙R∙η∙υ   (1).
R – радиус шарика, η – коэффициент вязкости жидкости.
Следует учесть, что при движении шарика имеет место не трение шарика о жидкость, а трение отдельных слоев жидкости друг о друга, так как шарик обволакивается тонким слоем жидкости, и этот слой жидкости движется вместе с шариком.
Сила трения с увеличением скорости движения шарика возрастает, следовательно, при движении шарика скорость её может достигнуть такой величины, при которой все три силы, действующие на шарик, будут уравновешены, то есть равнодействующая их будет равна нулю. Такое движение шарика будет равномерным, и шарика будет двигаться по инерции с постоянной скоростью.
\[ \begin{align}
  & {{{\vec{F}}}_{A}}+{{{\vec{F}}}_{Tp}}+m\cdot \vec{g}=0.\ Oy:\ {{F}_{A}}+{{F}_{Tp}}-m\cdot g=0. \\
 & {{F}_{A}}=\rho \cdot g\cdot V\ \ \ (2),\ V=\frac{4}{3}\cdot \pi \cdot {{(\frac{d}{2})}^{3}}\ \ \ (3),\ {{F}_{Tp}}=6\cdot \pi \cdot \frac{d}{2}\cdot \eta \cdot \upsilon \ \ \ (4),\ m={{\rho }_{c}}\cdot V,\  \\
 & m={{\rho }_{c}}\cdot \frac{1}{6}\cdot \pi \cdot {{(d)}^{3}}.\ {{F}_{Tp}}=m\cdot g-{{F}_{A}},\ 3\cdot \pi \cdot d\cdot \eta \cdot \upsilon ={{\rho }_{c}}\cdot g\cdot \frac{1}{6}\cdot \pi \cdot {{(d)}^{3}}-\rho \cdot g\cdot \frac{1}{6}\cdot \pi \cdot {{(d)}^{3}}, \\
 & \eta =\frac{g\cdot \frac{1}{6}\cdot \pi \cdot {{(d)}^{3}}({{\rho }_{c}}-\rho )}{3\cdot \pi \cdot d\cdot \upsilon }=\frac{g\cdot {{d}^{2}}\cdot ({{\rho }_{c}}-\rho )}{18\cdot \upsilon }. \\
\end{align} \]
\[ \eta =\frac{10\cdot {{(4\cdot {{10}^{-3}})}^{2}}\cdot (7,8\cdot {{10}^{3}}-1,2\cdot {{10}^{3}})}{18\cdot 0,2}=0,293. \]
η = 0,293 Па∙с.
« Последнее редактирование: 31 Января 2016, 19:06 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24