Задачи и вопросы по физике > Связанные тела

Шайба скользит по доске, лежащей на гладкой плоскости

(1/3) > >>

Fiz:
Здравствуйте!
Помогите пожалуйста решить задачу разными способами. Хотя бы двумя.

На гладкой горизонтальной плоскости находится длинная доска массой M = 2 кг. По доске скользит шайба массой m = 0,5 кг. Коэффициент трения между шайбой и доской k = 0,2. В начальный момент времени скорость шайбы υ0 = 2 м/с, а доска покоится. Сколько времени потребуется для того, чтобы шайба перестала скользить по доске?

alsak:
1 способ: динамический.Изобразим силы, действующие на шайбу: сила тяжести шайбы (m⋅g), сила реакции опоры (N1) и сила трения (Ftr1) (рис. 1). Скорость шайбы будет уменьшаться, поэтому ускорение a1 направлено в противоположную сторону скорости.
Изобразим силы, действующие на доску: сила тяжести доски (M⋅g), сила реакции опоры (N2). Еще две силы возникают в результате взаимодействия шайбы и доски: 1) сила давления шайбы на доску (P1) (по третьему закону Ньютона, с какой силой шайба давит на доску, с такой силой доска действует на шайбу, т.е. численно P1 = N1, но эти силы направлены в противоположные стороны); 2) сила трения между шайбой и доской (Ftr2) (по третьему закону Ньютона, эти силы равны по величине, но противоположны по направлению, т.е. Ftr1 = Ftr2) (рис. 2). Скорость доски будет увеличиваться (равнодействующая сил направлена вправо), поэтому ускорение a2 направлено вправо.

Запишем второй закон Ньютона для каждого тела (рис. 3):
 
\[ m \cdot \vec{a}_{1} = m \cdot \vec{g} + \vec{N}_{1} + \vec{F}_{tr1}, \, \, \, M \cdot \vec{a}_{2} = M \cdot \vec{g}+ \vec{N}_{2} + \vec{F}_{tr2} + \vec{P}_{1}, \]
0Y: 0 = N1 – m⋅g,    N1 = m⋅g,

0X: –m⋅a1 = –Ftr1,    M⋅a2 = Ftr2,
где Ftr1 = Ftr2 = μ⋅N1 = μ⋅m⋅g. Тогда ускорения тел будут равны

m⋅a1 = μ⋅m⋅g,    a1 = μ⋅g, (1)
 
\[ M \cdot a_{2} = \mu \cdot m \cdot g, \; \; \; a_{2} = \frac{\mu \cdot m \cdot g}{M}.\;\;\; (2) \]

Шайба перестанет скользить по доске, когда сравняются скорости шайбы и доски (υ1 = υ2). Запишем уравнения скоростей этих тел:

υ1x = υ01x + a1x⋅t,    υ2x = υ02x + a2x⋅t,
где υ1x = υ1, υ01x = υ0, a1x = –a1, υ2x = υ2, υ02x = 0, a2x = a2. Тогда

υ1 = υ0 – a1⋅t,    υ2 = a2⋅t.
Найдем время t1, когда υ1 = υ2, с учетом уравнений (1) и (2):

υ0 – a1⋅t1 = a2⋅t1,
\[ t_{1} = \frac{\upsilon_{0}}{a_{1} + a_{2}} = \frac{\upsilon_{0}}{\mu \cdot g + \mu \cdot m \cdot g /M} = \frac{\upsilon_{0} \cdot M}{\mu \cdot g \cdot \left(M + m \right)}, \]
t1 = 0,8 c.

Fiz:
Спасибо.
Метод динамический.Почему Вы так написали?
Есть ещё методы?

alsak:

--- Цитата: Fiz от 26 Марта 2011, 15:29 ---Метод динамический.Почему Вы так написали?
Есть ещё методы?

--- Конец цитаты ---

Потому что использовал законы динамики. Можно еще попробовать решить через законы сохранения.

Fiz:
А Вас можно попросить, если Вам нетрудно решить эту задачку через законы сохранения.
Интересно, такой ответ получится.
Я очень Вас прошу.

Навигация

[0] Главная страница сообщений

[#] Следующая страница

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Перейти к полной версии