Автор Тема: Какова масса первого шара?  (Прочитано 269 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Онлайн Антон Огурцевич

  • Наблюдатель
  • Ветеран
  • *
  • Сообщений: 2361
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
Какова масса первого шара?
« : 20 Март 2019, 00:34 »
1. Шар массой m1, движущийся горизонтально со скоростью v1, столкнулся с неподвижным шаром массой m2 = 1 кг и потерял при этом 50% своей кинетической энергии. Причём m1>m2. Какова масса первого шара? Удар прямой, абсолютно упругий, центральный. Ответ: m1 = 5,94 кг. Сделать рисунок.
« Последнее редактирование: 20 Март 2019, 19:59 от Антон Огурцевич »

Форум сайта alsak.ru

Какова масса первого шара?
« : 20 Март 2019, 00:34 »

Оффлайн Сергей

  • Наблюдатель
  • Ветеран
  • *
  • Сообщений: 2228
  • Рейтинг: +0/-0
Re: Какова масса первого шара?
« Ответ #1 : 22 Март 2019, 20:23 »
Решение. По условию задачи первый шар после взаимодействия теряет 50% своей кинетической энергии, запишем формулу для определения скорости первого шара до взаимодействия
\[ \frac{1}{2}\cdot \frac{{{m}_{1}}\cdot \upsilon _{1}^{2}}{2}=\frac{{{m}_{1}}\cdot u_{1}^{2}}{2},\frac{1}{2}\cdot \upsilon _{1}^{2}=u_{1}^{2},{{\upsilon }_{1}}=\sqrt{2}\cdot {{u}_{1}}(1). \]
Покажем рисунок, запишем закон сохранения импульса для упругого взаимодействия и выразим скорость второго шарика
\[ \begin{align}
  & {{m}_{1}}\cdot {{{\vec{\upsilon }}}_{1}}={{m}_{1}}\cdot {{{\vec{u}}}_{1}}+{{m}_{2}}\cdot {{{\vec{u}}}_{2}}.Ox:\,{{m}_{1}}\cdot {{\upsilon }_{1}}={{m}_{1}}\cdot {{u}_{1}}+{{m}_{2}}\cdot {{u}_{2}}, \\
 & {{m}_{1}}\cdot \sqrt{2}\cdot {{u}_{1}}={{m}_{1}}\cdot {{u}_{1}}+{{m}_{2}}\cdot {{u}_{2}},{{u}_{2}}=\frac{{{m}_{1}}\cdot {{u}_{1}}\cdot (\sqrt{2}\cdot -1)}{{{m}_{2}}}\,(2). \\
\end{align} \]
При абсолютно упругом взаимодействии сумма кинетических энергий тел до взаимодействия равна сумме кинетических энергий тел после взаимодействия.
\[ \begin{align}
  & \frac{{{m}_{1}}\cdot \upsilon _{1}^{2}}{2}=\frac{{{m}_{1}}\cdot u_{1}^{2}}{2}+\frac{{{m}_{2}}\cdot u_{2}^{2}}{2},{{m}_{1}}\cdot \upsilon _{1}^{2}={{m}_{1}}\cdot u_{1}^{2}+{{m}_{2}}\cdot u_{2}^{2}, \\
 & {{m}_{1}}\cdot {{(\sqrt{2}\cdot {{u}_{1}})}^{2}}={{m}_{1}}\cdot u_{1}^{2}+{{m}_{2}}\cdot {{(\frac{{{m}_{1}}\cdot {{u}_{1}}\cdot (\sqrt{2}\cdot -1)}{{{m}_{2}}})}^{2}}, \\
 & {{m}_{1}}\cdot 2\cdot {{u}_{1}}^{2}={{m}_{1}}\cdot u_{1}^{2}+{{m}_{2}}\cdot \frac{m_{1}^{2}\cdot u_{1}^{2}\cdot {{(\sqrt{2}\cdot -1)}^{2}}}{m_{2}^{2}},\,{{m}_{1}}\cdot 2\cdot {{u}_{1}}^{2}-{{m}_{1}}\cdot u_{1}^{2}=\frac{m_{1}^{2}\cdot u_{1}^{2}\cdot {{(\sqrt{2}\cdot -1)}^{2}}}{{{m}_{2}}},\, \\
 & {{m}_{1}}\cdot u_{1}^{2}=\frac{m_{1}^{2}\cdot u_{1}^{2}\cdot {{(\sqrt{2}\cdot -1)}^{2}}}{{{m}_{2}}},\,{{m}_{2}}={{m}_{1}}\cdot {{(\sqrt{2}\cdot -1)}^{2}},{{m}_{1}}=\frac{{{m}_{2}}}{{{(\sqrt{2}\cdot -1)}^{2}}}. \\
 & {{m}_{1}}=\frac{1}{{{(\sqrt{2}\cdot -1)}^{2}}}=5,94. \\
\end{align} \]
Ответ: 5,94 кг.
« Последнее редактирование: 31 Март 2019, 06:43 от alsak »