Автор Тема: Определить силу тока в проводниках  (Прочитано 8072 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
3. Два бесконечных прямолинейных проводника с одинаковыми токами, текущими в одном направлении, находятся друг от друга на расстоянии b. Чтобы их раздвинуть до расстояния 9∙b, на каждый сантиметр длины проводника затрачивается работа 4,39 нДж. Определить силу тока в проводниках. Сделать рисунок.

Оффлайн Виктор

  • Ветеран
  • *****
  • Сообщений: 526
  • Рейтинг: +0/-0
  • сделать можно многое, но времени так мало...
Re: Определить силу тока в проводниках
« Ответ #1 : 27 Октября 2017, 12:30 »
Решение: если по проводникам текут токи в одном направлении, то проводники притягиваются и необходимо совершить работу против электромагнитных сил притяжения. Сила взаимодействия двух проводников с током равна:
\[ F=\frac{{{\mu }_{0}}\cdot \mu \cdot {{I}_{1}}\cdot {{I}_{2}}\cdot L}{2\pi \cdot r}, \]
здесь μ0=4π•10–7 Гн/м – магнитная постоянная, μ – магнитная проницаемость (в задаче нет оговорок, считаем, что в вакууме, т.е. μ = 1), L – длина активной части – по условию можно взять - 1 сантиметр, r – расстояние между проводниками. Силы токов одинаковы, тогда
\[ F=\frac{{{\mu }_{0}}\cdot {{I}^{2}}\cdot L}{2\pi \cdot r}, \]
Работа переменной силы определяется следующим образом:
\[ A=\int{dA=\int_{{{r}_{1}}}^{{{r}_{2}}}{F\cdot dr}}=\int_{{{r}_{1}}}^{{{r}_{2}}}{\frac{{{\mu }_{0}}\cdot {{I}^{2}}\cdot L}{2\pi \cdot r}\cdot dr}=\frac{{{\mu }_{0}}\cdot {{I}^{2}}\cdot L}{2\pi }\cdot \int_{{{r}_{1}}}^{{{r}_{2}}}{\frac{dr}{r}=}\frac{{{\mu }_{0}}\cdot {{I}^{2}}\cdot L}{2\pi }\cdot \ln \left( \frac{{{r}_{2}}}{{{r}_{1}}} \right). \]
Искомый ток в проводниках:
\[ I=\sqrt{\frac{2\pi \cdot A}{{{\mu }_{0}}\cdot L\cdot \ln \left( \frac{{{r}_{2}}}{{{r}_{1}}} \right)}}. \]
\[ I=\sqrt{\frac{2\pi \cdot 4,39\cdot {{10}^{-9}}}{4\pi \cdot {{10}^{-7}}\cdot 1\cdot {{10}^{-2}}\cdot \ln \left( \frac{9b}{b} \right)}}\approx 1. \]
Ответ: 1 А.
« Последнее редактирование: 04 Ноября 2017, 06:24 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24