Задачи и вопросы по физике > Гидростатика
Вычислить давление
(1/1)
Антон Огурцевич:
39. Считая атмосферу изотермической, а ускорение свободного падения не зависящим от высоты, вычислить давление
а) на высоте 6 км,
б) на высоте 12 км,
в) в шахте на глубине 3 км.
Расчёт произвести для Т = 300 К. Давление на уровне моря принять равным р0. Сделать рисунок.
Сергей:
Решение. Для решения задачи запишем барометрическую формулу.
Барометрическая формула — зависимость давления или плотности газа от высоты в поле силы тяжести. Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:\[ p={{p}_{0}}\cdot {{e}^{-\frac{M\cdot g\cdot h}{R\cdot T}}}(1). \]Где: р0 - давление на уровне моря, равное нормальному атмосферному давлению, р0 = 105 Па, М – молярная масса воздуха, М = 29∙10-3 кг/м3, R = 8,31 Дж/(моль∙К) – универсальная газовая постоянная, g - ускорение свободного падения, g = 9,8 м/с2.\[ \begin{align}
& 1){{p}_{1}}={{10}^{5}}\cdot {{e}^{-\frac{29\cdot {{10}^{-3}}\cdot 9,8\cdot 6\cdot {{10}^{3}}}{8,31\cdot 3\cdot {{10}^{2}}}}}=0,5\cdot {{10}^{5}}. \\
& 2){{p}_{2}}={{10}^{5}}\cdot {{e}^{-\frac{29\cdot {{10}^{-3}}\cdot 9,8\cdot 12\cdot {{10}^{3}}}{8,31\cdot 3\cdot {{10}^{2}}}}}=0,257\cdot {{10}^{5}}. \\
& 3){{p}_{3}}={{10}^{5}}\cdot {{e}^{-\frac{29\cdot {{10}^{-3}}\cdot 9,8\cdot (-3\cdot {{10}^{3}})}{8,31\cdot 3\cdot {{10}^{2}}}}}=1,4\cdot {{10}^{5}}. \\
\end{align} \]
Навигация
Перейти к полной версии