Автор Тема: Найдите частоту малых колебаний такого маятника  (Прочитано 2693 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
5. Тонкий однородный диск массы m и радиуса R подвешен на горизонтальной оси, проходящей перпендикулярно диску через его край O. К диаметрально противоположному краю диска прикрепили небольшой пластилиновый шарик такой же массы m. Найдите частоту малых колебаний такого маятника. Трением в оси пренебречь. Принять g = 10 м/с2, m = 1 кг, R = 1 м. Ответ: 2,69 с. Сделать рисунок.
« Последнее редактирование: 12 Марта 2017, 04:22 от Антон Огурцевич »

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Решение.
Определим центр масс системы.
\[ m\cdot g\cdot x=m\cdot g\cdot (R-x),m\cdot g\cdot x=m\cdot g\cdot R-m\cdot g\cdot x,x=\frac{R}{2}(1). \]
Диск представляет собой физический маятник, период физического маятника определяется по формуле:
\[ T=2\cdot \pi \cdot \sqrt{\frac{J}{m\cdot g\cdot (R+x)}}\ \ \ (2),\nu =\frac{1}{T}(3). \]
Где: R + х - расстояние центра тяжести маятника до оси колебаний.
J – момент инерции диска, относительно оси колебаний (теорема Штейнера):
\[ \begin{align}
  & J={{J}_{0}}+m\cdot {{(R+x)}^{2}}+m\cdot {{(R+x)}^{2}},\ {{J}_{0}}=\frac{m\cdot {{R}^{2}}}{2}\ ,\  \\
 & J=\frac{m\cdot {{R}^{2}}}{2}+2\cdot m\cdot {{(R+x)}^{2}}\ \ (4). \\
\end{align} \]
Подставим (3) в (2) определим период:
\[ \begin{align}
  & T=2\cdot \pi \cdot \sqrt{\frac{\frac{m\cdot {{R}^{2}}}{2}+2\cdot m\cdot {{(R+x)}^{2}}}{m\cdot g\cdot (R+x)}},\ T=2\cdot \pi \cdot \sqrt{\frac{\frac{{{R}^{2}}}{2}+{{(R+\frac{R}{2})}^{2}}}{g\cdot (R+\frac{R}{2})}}\ \ , \\
 & T=2\cdot \pi \cdot \sqrt{\frac{11\cdot R}{6\cdot g}}(5),T=2\cdot 3,14\cdot \sqrt{\frac{11\cdot 1}{6\cdot 10}}=2,69. \\
 & \nu =\frac{1}{2,69}=0,37. \\
\end{align} \]
Ответ: Т = 2,69 с, ν = 0,37 Гц.
« Последнее редактирование: 20 Марта 2017, 06:39 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24