Автор Тема: Человек стоит на вращающейся скамье Жуковского  (Прочитано 3422 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
Человек стоит на вращающейся скамье Жуковского и держит гири на некотором расстоянии. Какую работу нужно совершить, чтобы сместить гири к оси вращения, если угловая скорость скамьи первоначально была равна omega1? Момент инерции скамьи с человеком J0, момент инерции гирь в первом и втором положении равен J1 и J2 соответственно. Сделать рисунок.

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Решение.
 Для решения задачи применим закон сохранения момента импульса. Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке, и состоит в следующем:
Если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.
Момент импульса определяется по формуле:
L = J∙ω   (1).
ω – угловая скорость. J – момент инерции.
Момент инерции скалярная величина. Определим суммарный момент инерции в каждом случае относительно перпендикулярной оси, проходящей через центр большего диска.
Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J0 (J0 – момент инерции диска с человеком) относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния r между осями:
\[ \begin{align}
  & J_{1}^{'}={{J}_{0}}+{{J}_{1}}\ \ \ (2),\ J_{2}^{'}={{J}_{0}}+{{J}_{2}}\ \ \ (3),\ {{L}_{1}}={{L}_{2}}\ \ \ (4), \\
 & ({{J}_{0}}+{{J}_{1}}\ )\cdot {{\omega }_{1}}=({{J}_{0}}+{{J}_{2}})\cdot {{\omega }_{2}},\ {{\omega }_{2}}=\frac{({{J}_{0}}+{{J}_{1}})\cdot {{\omega }_{1}}}{({{J}_{0}}+{{J}_{2}})}\ (5). \\
\end{align} \]
Запишем формулу по которой определим работу которую необходимо совершить чтобы сместить гири к оси вращения:
\[ \begin{align}
  & A=\frac{J_{1}^{'}\cdot \omega _{2}^{2}}{2}-\frac{J_{2}^{'}\cdot \omega _{1}^{2}}{2}\ \ \ \ (6),\ A=\ \frac{({{J}_{0}}+{{J}_{2}})\cdot {{(\frac{({{J}_{0}}+{{J}_{1}})\cdot {{\omega }_{1}}}{({{J}_{0}}+{{J}_{2}})})}^{2}}}{2}-\ \frac{({{J}_{0}}+{{J}_{1}})\cdot \omega _{1}^{2}}{2},\  \\
 & A=\frac{({{J}_{0}}+{{J}_{1}})\cdot \omega _{1}^{2}}{2}\cdot (\frac{({{J}_{0}}+{{J}_{1}})}{({{J}_{0}}+{{J}_{2}})}-1)\,(10). \\
 &  \\
\end{align} \]

« Последнее редактирование: 04 Февраля 2017, 06:44 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24