Автор Тема: Электростатическое поле создаётся сферой радиусом  (Прочитано 4765 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
1. 36. Электростатическое поле создаётся сферой радиусом R = 5 см, равномерно заряженной с поверхностной плотностью σ = 1 нКл/м2. Определить разность потенциалов между двумя точками поля, лежащими на расстояниях R1 = 10 см и R2 = 15 см от центра сферы. Ответ: 0,94 В. Сделать рисунок.

Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Решение.
На сфере радиуса R распределен заряд q. Поверхностная плотность заряда определяется по формуле:
\[ \sigma =\frac{q}{S}(1),S=4\cdot \pi \cdot {{R}^{2}}(2),q=\sigma \cdot 4\cdot \pi \cdot {{R}^{2}}(3).
 \]
Напряженность в точке которая находится на расстоянии (r > R) от центра сферы определяется по формуле:
\[ E=\frac{k\cdot q}{{{r}^{2}}}(4). \]
Разность потенциалов между точками, лежащими на расстояниях R1 и R2 от центра сферы равна:
\[ \begin{align}
  & {{\varphi }_{1}}-{{\varphi }_{2}}=\int\limits_{{{R}_{1}}}^{{{R}_{2}}}{Edr=}\int\limits_{{{R}_{1}}}^{{{R}_{2}}}{\frac{k\cdot q}{{{r}^{2}}}dr=}\int\limits_{{{R}_{1}}}^{{{R}_{2}}}{\frac{k\cdot \sigma \cdot 4\cdot \pi \cdot {{R}^{2}}}{{{r}^{2}}}dr=\left. k\cdot \sigma \cdot 4\cdot \pi \cdot {{R}^{2}}(\frac{{{r}^{-2+1}}}{-2+1}) \right|}_{{{R}_{1}}}^{{{R}_{2}}}= \\
 & k\cdot \sigma \cdot 4\cdot \pi \cdot {{R}^{2}}\cdot (\frac{1}{{{R}_{1}}}-\frac{1}{{{R}_{2}}})=k\cdot \sigma \cdot 4\cdot \pi \cdot {{R}^{2}}\cdot (\frac{{{R}_{2}}-{{R}_{1}}}{{{R}_{1}}\cdot {{R}_{2}}}). \\
 & {{\varphi }_{1}}-{{\varphi }_{2}}=9\cdot {{10}^{9}}\cdot 1\cdot {{10}^{-9}}\cdot 4\cdot 3,14\cdot {{(5\cdot {{10}^{-2}})}^{2}}\cdot (\frac{15\cdot {{10}^{-2}}-10\cdot {{10}^{-2}}}{10\cdot {{10}^{-2}}\cdot 15\cdot {{10}^{-2}}})=0,942. \\
\end{align} \]
Ответ: 0,94 В.
« Последнее редактирование: 16 Августа 2016, 16:24 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24