Решение.
Вращающий момент сил если ось вращения совпадает с главной осью инерции, проходящей через центр масс, определяется по формуле:
М = J∙ε (1).
J – момент инерции сплошного цилиндра, ε – угловое ускорение вращения цилиндра.
\[ \begin{align}
& J=\frac{1}{2}\cdot m\cdot {{R}^{2}}\ \ \ (2),\ m=\rho \cdot V\ \ \ (3),\ V=\pi \cdot {{R}^{2}}\ \ \ (4),\ m=\rho \cdot \pi \cdot {{R}^{2}},\ {{R}^{2}}=\frac{m}{\rho \cdot \pi }\ \ \ (5), \\
& J=\frac{1}{2}\cdot m\cdot \frac{m}{\rho \cdot \pi },\ J=\frac{{{m}^{2}}}{2\cdot \rho \cdot \pi }\ \ \ \ (6),\ \\
& \frac{{{M}_{1}}}{{{M}_{2}}}=\frac{{{J}_{1}}\cdot \varepsilon }{{{J}_{2}}\cdot \varepsilon }=\frac{\frac{{{m}^{2}}}{2\cdot {{\rho }_{1}}\cdot \pi }}{\frac{{{m}^{2}}}{2\cdot {{\rho }_{2}}\cdot \pi }}=\frac{{{\rho }_{2}}}{{{\rho }_{1}}}=\frac{{{\rho }_{2}}}{\frac{3}{4}{{\rho }_{2}}}=\frac{4}{3}=1,33333. \\
\end{align} \]