Автор Тема: Газ массой  (Прочитано 1090 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Антон Огурцевич

  • Ветеран
  • *****
  • Сообщений: 2401
  • Рейтинг: +5/-0
  • Пространство переходит во время, как тело в душу.
Газ массой
« : 01 Апреля 2015, 13:52 »
Газ массой m, находится в сосуде объемом V при температуре t (состояние 1). Газ последовательно переводят между тремя состояниями: 1→2→3→1. Вид перехода между состояниями и соответствующее ему изменение параметров указано в таблице. Определить значение термодинамических параметров (давление, объем, температура) во всех состояниях газа и изобразить данный циклический процесс на трех диаграммах (pV, pT, VT) в соответствии с вычисленными значениями термодинамических параметров. Сделать рисунок.



Оффлайн Сергей

  • Ветеран
  • *****
  • Сообщений: 2256
  • Рейтинг: +0/-0
Re: Газ массой
« Ответ #1 : 01 Апреля 2015, 14:51 »
Решение.
Покажем рисунки.
Пункт 1. V1 = 25∙10-3 м3, Т1 = (627 +273) = 900 К.
Давление определим используя уравнение Клапейрона Менделеева.
\[ {{p}_{1}}\cdot {{V}_{1}}=\frac{m}{M}\cdot R\cdot {{T}_{1}},\ {{p}_{1}}=\frac{m}{M\cdot {{V}_{1}}}\cdot R\cdot {{T}_{1}}\ \ \ (1). \]
Где: R = 8,31 Дж/моль∙К – универсальная газовая постоянная, М = 4∙10-3 кг/моль, М – молярная масса гелия.
р1 = 2,24∙106 Па.
Пункт 2.
р = соnst, р2 = 2,24∙106 Па.
Т2 = Т1/3, Т2 = 300 К.
\[ \frac{{{V}_{1}}}{{{T}_{1}}}=\frac{{{V}_{2}}}{{{T}_{2}}},\ {{V}_{2}}=\frac{{{V}_{1}}}{{{T}_{1}}}\cdot {{T}_{2}}\ \ \ (2). \]
V2 = 8,33∙10-3 м3.
Пункт 3.
Т = соnst. Т3 = Т1 = 900 К.
Определим р2. Процесс 2→3 – изохорный.
\[ \frac{{{p}_{1}}}{{{T}_{2}}}=\frac{{{p}_{2}}}{{{T}_{3}}},\ {{p}_{2}}=\frac{{{p}_{1}}}{{{T}_{2}}}\cdot {{T}_{3}}\ \ \ (3). \]
р2 = 6,72∙106 Па.
Ответ: V1 = 25∙10-3 м3, Т1 = 900 К, р1 = 2,24∙106 Па.
V2 = 8,33∙10-3 м3, Т2 = 300 К, р2 = 2,24∙106 Па.
V3 = 8,33∙10-3 м3, Т3 = 900 К, р2 = 6,72∙106 Па.
« Последнее редактирование: 22 Апреля 2015, 06:11 от alsak »

 

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24