Задачи и вопросы по физике > Динамика твердых тел
Найти скорость центра стержня сразу после удара
(1/1)
Антон Огурцевич:
Однородный стержень, падавший в горизонтальном положении с высоты h, упруго ударился одним концом о край массивной плиты. Найти скорость центра стержня сразу после удара. Сделать рисунок.
Сергей:
Решение.
До удара стержень участвует только в поступательном движении, после удара к поступательному движению добавится вращательное движение. В момент удара стержень имеет только кинетическую энергию. Кинетическая энергия после удара состоит из энергии поступательного движения и энергии вращательного движения.
Запишем закон сохранения энергии:\[ \frac{m\cdot {{\upsilon }^{2}}}{2}=\frac{m\cdot \upsilon _{1}^{2}}{2}+\frac{I\cdot {{\omega }^{2}}}{2}\ \ \ (1 \]υ – линейная скорость тела, υ1 – линейная скорость тела после удара, I – момент инерции тела, ω – угловая скорость вращения стержня относительно его центра масс, m – масса стержня.
Закон сохранения момента импульса запишем в системе отсчета, связанной с центром масс стержня: \[ m\cdot \upsilon \cdot \frac{l}{2}=m\cdot {{\upsilon }_{1}}\cdot \frac{l}{2}+I\cdot \omega \ \ \ (2). \]I∙ω – собственный момент импульса стержня, I - момент инерции стержня относительно его центра масс, l – длина стержня.\[ I=\frac{m\cdot {{l}^{2}}}{12}\ \ \ (3). \]Подставим (3) в (2) выразим угловую скорость вращения стержня относительно его центра масс:\[ \omega =\frac{6\cdot (\upsilon -{{\upsilon }_{1}})}{l}\ \ \ (4). \]Подставим (4) в (1) и решим квадратное уравнение:\[ \frac{m\cdot {{\upsilon }^{2}}}{2}=\frac{m\cdot {{\upsilon }_{1}}^{2}}{2}+\frac{m\cdot {{l}^{2}}}{12}\cdot \frac{36\cdot {{(\upsilon -{{\upsilon }_{1}})}^{2}}}{2\cdot {{l}^{2}}}\ . \] Получим два ответа, правильным будет ответ υ1 = υ/2.\[ \upsilon =\sqrt{2\cdot g\cdot h},\ {{\upsilon }_{1}}=\frac{\sqrt{2\cdot g\cdot h}}{2}=\sqrt{\frac{g\cdot h}{2}}. \]
Навигация
Перейти к полной версии