Задачи и вопросы по физике > Капельян Пособие для подготовки к ЦТ 2011

2. Равноускоренное прямолинейное движение. Свободное падение

<< < (4/9) > >>

Сергей:
А2.6 Свободно падающее тело за последнюю секунду своего падения проходит путь h = 100 м. Время падения тела равно:
1) 0,500 с;   2) 8,00 с;   3) 10,5 с;   4) 11,0 с;   5) 11,5 с.

Решение. Направим ось Оу вертикально вниз, начало оси совместим с точкой начала движения. Тогда у0 = 0, υ0у = 0, gy = g. Тогда  уравнение выражающее зависимость координаты тела от времен, будет иметь вид:
 \[ y=\frac{g\cdot {{t}^{2}}}{2}\,\,\,(1) \]
Обозначим t1 – время падения тела, t2 = 1 с по условию. В момент времени t1 – t2 координата тела будет равна
 \[ H-h=\frac{g\cdot {{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}}{2}\,\,\,(2) \]
Когда тело упадет на землю, у = Н. Согласно (1)
\[ H=\frac{g\cdot t_{1}^{2}}{2} \]
Подставим это уравнение в (2)
 \[ \begin{align}
  & \frac{g\cdot t_{1}^{2}}{2}-h=\frac{g\cdot {{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}}{2}\,; \\
 & \,\,\,\,\,\,\,\,\,\,{{t}_{1}}=\frac{{{t}_{2}}}{2}+\frac{h}{g\cdot {{t}_{2}}} \\
\end{align}
 \]
Ответ: 3) 10,5 с

Сергей:
А2.7 С каким модулем начальной скорости нужно бросить вертикально вниз тело с высоты h = 20,0 м, чтобы оно упало на Δt = 1,00 с раньше, чем тело, свободно падающее с той же высоты?
1)9,80 м/с;   2)10,6 м/с;   3) 12,4 м/с;   4) 14,2 м/с;5)   15,0   м/с.

Решение. Кинематическое уравнение движения свободно падающего тела в проекции на ось Оу имеет вид
 \[ y={{y}_{0}}+{{\upsilon }_{{{0}_{y}}}}\cdot t+\frac{{{g}_{y}}\cdot {{t}^{2}}}{2} \]
Направим ось Оу вертикально вниз, начало оси совместим с точкой начала движения. Тогда у0 = 0, gy = g и для свободно падающего тела υ0у = 0. Пусть t1 – время свободного падения, t2 – время падения тела брошенного с начальной скоростью. В момент падения тела y = h. Запишем уравнения для двух случаев:
 \[ h=\frac{g\cdot t_{1}^{2}}{2}\,\,\,\,(1);\,\,\,\,\,h={{\upsilon }_{0}}\cdot {{t}_{2}}+\frac{g\cdot t_{2}^{2}}{2}\,\,\,(2) \]
По условию задачи t2 = t1 – Δt. Из (1)
 \[ {{t}_{1}}=\sqrt{\frac{2\cdot h}{g}} \]
t1 = 2 с, тогда t2 = 1с. Выразим υ0 из (2)
 \[ {{\upsilon }_{0}}=\frac{h}{{{t}_{2}}}-\frac{g\cdot {{t}_{2}}}{2} \]
Ответ: 5) 15,0 м/с.

Сергей:
А2.8 Тело свободно падает с высоты h = 125 м. Модуль средней скорости тела на нижней половине пути равен:
1)11,5 м/с;   2) 17,9 м/с;   3) 25,0 м/с;   4) 35,7 м/с;   5) 42,7 м/с.

Решение. Среднюю скорость пути можно найти как отношение пройденного пути. Поскольку нам надо определить среднюю скорость во второй половине пути, то
 \[ \left\langle \upsilon  \right\rangle =\frac{h}{2\cdot t}\,\,(1) \]
Где t – время движения на второй половине пути. Если t2 – общее время падения и t1 – время падения на первой половине пути то t = t2 – t1
Направим ось Оу вертикально вниз, начало оси совместим с точкой начала движения. Тогда у0 = 0, υ0у = 0, gy = g. Тогда  уравнение выражающее зависимость координаты тела от времен, будет иметь вид:
 \[ y=\frac{g\cdot {{t}^{2}}}{2} \]
В момент падения y = h, на половине пути y=h/2. Тогда
 \[ \begin{align}
  & {{t}_{2}}=\sqrt{\frac{2\cdot h}{g}};\,\,\,\,\,\,{{t}_{1}}=\sqrt{\frac{h}{g}}; \\
 & t=\sqrt{\frac{2\cdot h}{g}}-\sqrt{\frac{h}{g}}; \\
\end{align}
 \]
Тогда на основании (1)
 \[ \left\langle \upsilon  \right\rangle =\frac{h}{2\left( \sqrt{\frac{2\cdot h}{g}}-\sqrt{\frac{h}{g}} \right)} \]
<υ> = 42,8 м/с
Ответ: 5) 42,7 м/с

Сергей:
А2.9 Если свободно падающее тело последнее расстояние h = 200 м про-летело за время t = 4,00 с, то тело падало с высоты:
1) 245 м;   2) 322 м   3) 382 м;    4) 490 м;   5) 788 м.

Решение.    Смотри задачу А2.6.
\[ H=\frac{g\cdot t_{1}^{2}}{2};\,\,\,\,\,{{t}_{1}}=\frac{{{t}_{2}}}{2}+\frac{h}{g\cdot {{t}_{2}}} \]

Ответ: 1) 245 м;

Сергей:
А2.10 Парашютист, спускающийся с постоянной скоростью, модуль которой υ = 500 см /с, находясь на высоте h = 100 м, бросил вертикально вниз небольшое тело со скоростью, модуль которой υ0 = 10,0 м/с относительно парашютиста. Интервал времени между падением тела и приземлением парашютиста составит:
1)14.4 с;    2) 16,8 с;   3) 20 с;    4) 24,2 с;    5) 32,4 с.

Решение. Интервал времени между падением тела и приземлением парашютиста
Δt = t2 – t1Где t2 – время движения парашютиста, t1 – время падения тела.
Парашютист спускается с постоянной по модулю скоростью с высоты h, тогда
 \[ {{t}_{2}}=\frac{h}{\upsilon } \]
Рассмотрим падение тела. Уравнение, выражающее зависимость координаты тела от времен, будет иметь вид:
 \[ y={{y}_{0}}+{{\upsilon }_{{{0}_{y}}}}\cdot t+\frac{{{g}_{y}}\cdot t}{2}\,\, \]
Направим ось Оу вертикально вниз, начало оси совместим с точкой начала движения. Тогда у0 = 0, gy = g, υ0у = υot. Где  υot – скорость движения тела относительно Земли.
υot = υ+υ0В момент падения тела y = h. Тогда:
 \[ \,h={{\upsilon }_{ot}}\cdot {{t}_{1}}+\frac{g\cdot t_{1}^{2}}{2} \]
Решим это уравнение и получим только один корень, удовлетворяющий условию – t1 = 3,22 с.
Δt = t2 – t1 = 16,8 с
Ответ: 2) 16,8 с;

Навигация

[0] Главная страница сообщений

[#] Следующая страница

[*] Предыдущая страница

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Перейти к полной версии