Решение.
Покажем рисунок.
Запишем условие максимума .
∆d = d2 – d1 = k∙λ (1).
По теореме Пифагора выразим
d1 и
d2:
\[ d_{2}^{2}={{l}^{2}}+{{({{x}_{k}}+\frac{d}{2})}^{2}},\ d_{1}^{2}={{l}^{2}}+{{({{x}_{k}}-\frac{d}{2})}^{2}}. \]
l – расстояние от источников до экрана,
хk – расстояние от нулевого до
k максимума.
Преобразуем равенства:
\[ d_{2}^{2}-d_{1}^{2}=2\cdot {{x}_{k}}\cdot d,\ ({{d}_{2}}+{{d}_{1}})\cdot ({{d}_{2}}-{{d}_{1}})=2\cdot {{x}_{k}}\cdot d. \]
Примем:
\[ d\ll l,\ {{d}_{1}}+{{d}_{2}}=2\cdot l,\ {{d}_{2}}-{{d}_{1}}=\frac{{{x}_{k}}\cdot d}{l}\ \ \ (2). \]
Подставим (1) в (2) выразим
хk и определим расстояние между соседними максимумами. Расстояние между соседними максимумами равно ширине интерференционной полосе.
\[ \begin{align}
& k\cdot \lambda =\frac{{{x}_{k}}\cdot d}{l},\ {{x}_{k}}=\frac{k\cdot l\cdot \lambda }{d},\ {{x}_{k+1}}=\frac{(k+1)\cdot l\cdot \lambda }{d}. \\
& \Delta x={{x}_{k+1}}-{{x}_{k}},\ \Delta x=\frac{(k+1)\cdot l\cdot \lambda }{d}-\frac{k\cdot l\cdot \lambda }{d}=\frac{l\cdot \lambda }{d}\ \ \ (3), \\
& \lambda =\frac{\Delta x\cdot d}{l}\ \ \ (4). \\
\end{align} \]
λ = 5∙10
-7 м.