Решение.
Для нахождения работы подъема груза по наклонной плоскости запишем формулу:
А = F∙l∙соsα    (1).
F – сила с которой поднимают груз по наклонной плоскости. α – угол между вектором перемещения груза и направлением силы с которой поднимают груз по наклонной плоскости.
α = 0°, соsα = 1   (2).
Определим силу с которой поднимают груз.  Покажем на рисунке силы, которые действуют на брусок и ускорение, с которым движется брусок. Выберем оси координат 
Ох и 
Оy как показано на рисунке. 
Для решения задачи используем второй закон Ньютона. Найдем проекции на оси 
Ох и Оy, распишем силу трения и выразим силу.
\[ \begin{align}
  & \vec{F}=m\cdot \vec{a},\ \vec{N}+m\cdot \vec{g}+\vec{F}+{{{\vec{F}}}_{TP}}=m\cdot \vec{a},\ {{F}_{TP}}=f\cdot N. \\ 
 & Ox:\ F-m\cdot g\cdot \sin \varphi -{{F}_{TP}}=m\cdot a, \\ 
 & Oy:\ N-m\cdot g\cdot \cos \varphi =0; \\ 
 & F-m\cdot g\cdot \sin \varphi -f\cdot m\cdot g\cdot \cos \varphi =m\cdot a,\  \\ 
 & F=m\cdot g\cdot \sin \varphi +f\cdot m\cdot g\cdot \cos \varphi +m\cdot a\ \ \ (3). \\ 
\end{align} \]
Подставим (3) и (2) в (1) определим работу подъема груза по наклонной плоскости:
\[ A=l\cdot m\cdot (g\cdot \sin \varphi +f\cdot g\cdot \cos \varphi +a)\ \ \ (4). \]
А = 473 Дж.