Решение.
Первая производная от углового перемещения есть угловая скорость:
\[ \omega (t)=\varphi {{(t)}^{\prime }}={{(30+0,2\cdot t+0,01\cdot {{t}^{3}})}^{\prime }}=0,2+0,03\cdot {{t}^{2}},\ \omega (t)=\ 0,2+0,03\cdot {{t}^{2}}\ \ (1).
\]
Определим зависимость углового ускорения точки от времени как вторую производную от φ по
t:
\[ \begin{align}
& \varepsilon =\varphi {{(t)}^{\prime \prime }}={{(30+0,2\cdot t+0,01\cdot {{t}^{3}})}^{\prime \prime }}={{(0,2+0,03\cdot {{t}^{2}})}^{\prime }}=0,06\cdot t. \\
& \varepsilon =0,06\cdot t\ \ \ (2) \\
\end{align} \]
Определим тангенциальное и нормальное ускорение точки на окружности диска для момента времени
t = 1 c
\[ \begin{align}
& {{a}_{\tau }}=\varepsilon \cdot R,{{a}_{\tau }}=(0,06\cdot t)\cdot R,{{a}_{\tau }}=(0,06\cdot 1)\cdot 0,8=0,048. \\
& {{a}_{n}}=\frac{{{\upsilon }^{2}}}{R},\upsilon =\omega \cdot R,{{a}_{n}}=\frac{{{\omega }^{2}}\cdot {{R}^{2}}}{R},{{a}_{n}}={{\omega }^{2}}\cdot R,{{a}_{n}}={{(0,2+0,03\cdot {{t}^{2}})}^{2}}\cdot R, \\
& {{a}_{n}}={{(0,2+0,03\cdot {{1}^{2}})}^{2}}\cdot 0,8=0,184. \\
\end{align} \]
Нормальное ускорение направленно по радиусу к центру окружности.
Ответ: 0,048 м/с
2, 0,184 м/с
2.