Последние сообщения

Страницы: 1 ... 4 5 [6] 7 8 ... 10
51
Решение.
1). Рассмотрим случай, когда токи текут в одном направлении. Покажем рисунок. Направление вектора магнитной индукции определим по правилу буравчика. Результирующий вектор магнитной индукции определим по правилу суперпозиции. Магнитная индукция, создаваемая проводником с током на расстоянии R от проводника определим по формуле:
\[ \begin{align}
  & B=\frac{{{\mu }_{0}}\cdot I}{2\cdot \pi \cdot R},\ {{B}_{1}}=\frac{{{\mu }_{0}}\cdot {{I}_{1}}}{2\cdot \pi \cdot {{r}_{1}}}\ \ \ (1),\ {{B}_{2}}=\frac{{{\mu }_{0}}\cdot {{I}_{2}}}{2\cdot \pi \cdot {{r}_{2}}}\ \ \ (2). \\
 & \vec{B}={{{\vec{B}}}_{1}}\ +{{{\vec{B}}}_{2}},\,-{{B}_{1}}\ +{{B}_{2}}=0(1),{{B}_{1}}=\frac{{{\mu }_{0}}\cdot {{I}_{1}}}{2\cdot \pi \cdot (R-x)}\ \ \ (2),\ {{B}_{2}}=\frac{{{\mu }_{0}}\cdot {{I}_{2}}}{2\cdot \pi \cdot x}\ \ \ (3). \\
 & -\frac{{{\mu }_{0}}\cdot {{I}_{1}}}{2\cdot \pi \cdot (R-x)}+\frac{{{\mu }_{0}}\cdot {{I}_{2}}}{2\cdot \pi \cdot x}=0,\ \frac{{{\mu }_{0}}\cdot {{I}_{1}}}{2\cdot \pi \cdot (R-x)}=\frac{{{\mu }_{0}}\cdot {{I}_{2}}}{2\cdot \pi \cdot x},\frac{{{I}_{1}}}{R-x}=\frac{{{I}_{2}}}{x},{{I}_{1}}\cdot x={{I}_{2}}\cdot R-{{I}_{2}}\cdot x, \\
 & x=\frac{{{I}_{2}}\cdot R}{{{I}_{1}}+{{I}_{2}}}. \\
 & x=\frac{16\cdot 0,2}{24+16}=0,08. \\
\end{align}
 \]
Ответ: 8 см. от второго проводника, 12 см. от первого проводника.
2). Рассмотрим случай, когда токи текут в противоположных направлениях. Покажем рисунок. Направление вектора магнитной индукции определим по правилу буравчика. Результирующий вектор магнитной индукции определим по правилу суперпозиции. Магнитная индукция, создаваемая проводником с током на расстоянии R от проводника определим по формуле:
\[ \begin{align}
  & B=\frac{{{\mu }_{0}}\cdot I}{2\cdot \pi \cdot R},\ {{B}_{1}}=\frac{{{\mu }_{0}}\cdot {{I}_{1}}}{2\cdot \pi \cdot {{r}_{1}}}\ \ \ (1),\ {{B}_{2}}=\frac{{{\mu }_{0}}\cdot {{I}_{2}}}{2\cdot \pi \cdot {{r}_{2}}}\ \ \ (2). \\
 & \vec{B}={{{\vec{B}}}_{1}}\ +{{{\vec{B}}}_{2}},\,{{B}_{1}}\ -{{B}_{2}}=0(1),{{B}_{1}}=\frac{{{\mu }_{0}}\cdot {{I}_{1}}}{2\cdot \pi \cdot (R+x)}\ \ \ (2),\ {{B}_{2}}=\frac{{{\mu }_{0}}\cdot {{I}_{2}}}{2\cdot \pi \cdot x}\ \ \ (3). \\
 & \frac{{{\mu }_{0}}\cdot {{I}_{1}}}{2\cdot \pi \cdot (R+x)}-\frac{{{\mu }_{0}}\cdot {{I}_{2}}}{2\cdot \pi \cdot x}=0,\ \frac{{{\mu }_{0}}\cdot {{I}_{1}}}{2\cdot \pi \cdot (R+x)}=\frac{{{\mu }_{0}}\cdot {{I}_{2}}}{2\cdot \pi \cdot x},\frac{{{I}_{1}}}{R+x}=\frac{{{I}_{2}}}{x},{{I}_{1}}\cdot x={{I}_{2}}\cdot R+{{I}_{2}}\cdot x, \\
 & x=\frac{{{I}_{2}}\cdot R}{{{I}_{1}}-{{I}_{2}}}. \\
 & x=\frac{16\cdot 0,2}{24-16}=0,4. \\
\end{align}
 \]
Ответ: 40 см. от второго проводника, 60 см. от первого проводника.
52
ЭДС индукции / Два вертикальных проводящих стержня
« Последний ответ от Антон Огурцевич 28 Сентября 2019, 16:07 »
8. Два вертикальных проводящих стержня, замкнутых сверху сопротивлением 2 Ом, расположены в плоскости, перпендикулярной вектору магнитной индукции В = 0,5 Тл однородного магнитного поля. По стержням равномерно, без трения и нарушения контакта, скользит вниз проводник массой 0,01 кг. Расстояние между проводниками 0,2 м. Определить количество теплоты, выделяющейся в цепи за одну секунду, и установившуюся скорость движения проводника. Сделать рисунок.
53
6. По двум прямолинейным параллельным проводникам большой длины, расположенным в воздухе на расстоянии 20 см друг от друга, текут токи 24 А и 16 А. Найти геометрическое место точек, в которых индукция магнитного поля равна нулю при одинаковых и противоположных направлениях токов. Сделать рисунок.
54
Вектор индукции / Re: Тонкое кольцо радиуса
« Последний ответ от Сергей 19 Сентября 2019, 21:31 »
Решение. Покажем рисунок. Направление вектора магнитной индукции кольцевого тока и прямого длинного проводника с током определим по правилу буравчика. (В1 – направление вектора магнитной индукции прямого длинного проводника с током, В2 – направление вектора магнитной индукции полукольца с током перпендикулярного плоскости проводника, В3 – направление вектора магнитной индукции полукольца с током находящегося в плоскости проводника).
  Магнитную индукцию, создаваемую проводником с током, на расстоянии R от проводника определим по формуле
\[ {{B}_{1}}=\frac{{{\mu }_{0}}\cdot I}{2\cdot \pi \cdot R}\ ,{{B}_{1}}=\frac{{{\mu }_{0}}\cdot {{I}_{0}}\cdot \frac{\pi }{2}}{2\cdot \pi \cdot R},{{B}_{1}}=\frac{{{\mu }_{0}}\cdot {{I}_{0}}}{4\cdot R}\ \ (1). \]
μ0 = 4∙π∙10-7 Н/А2 – магнитная постоянная.
Магнитная индукция в центре полукруговых витков с током определим по формуле:
\[ B=\frac{{{\mu }_{0}}\cdot {{I}_{0}}}{2\cdot R},{{B}_{2}}=\frac{1}{2}\cdot \frac{{{\mu }_{0}}\cdot {{I}_{0}}}{2\cdot R},\ {{B}_{2}}=\frac{{{\mu }_{0}}\cdot {{I}_{0}}}{4\cdot R}\ \ (2),{{B}_{3}}=\frac{{{\mu }_{0}}\cdot {{I}_{0}}}{4\cdot R}\ \ \ (3). \]
Результирующий вектор магнитной индукции определим по правилу суперпозиции.
\[  \begin{align}
  & \vec{B}={{{\vec{B}}}_{1}}+{{{\vec{B}}}_{2}}+{{{\vec{B}}}_{3}}. \\
 & {{B}_{13}}={{B}_{1}}-{{B}_{3}},{{B}_{13}}=\frac{{{\mu }_{0}}\cdot {{I}_{0}}}{4\cdot R}-\frac{{{\mu }_{0}}\cdot {{I}_{0}}}{4\cdot R},{{B}_{13}}=0(4), \\
 & B={{B}_{2}},B=\frac{{{\mu }_{0}}\cdot {{I}_{0}}}{4\cdot R}(5). \\
\end{align} \]
55
Вектор индукции / Тонкое кольцо радиуса
« Последний ответ от Антон Огурцевич 19 Сентября 2019, 20:04 »
Тонкое кольцо радиуса R с током I0 сложено под углом π/2. В плоскости одного из полуколец на расстоянии R от центра полукольца находится бесконечный проводник с током I = I0∙π/2. Используя закон Био-Савара, определить индукцию магнитного поля в точке O. Сделать рисунок.
56
Бесплатный новый вопрос / Re: Закон Гука
« Последний ответ от Денис 14 Сентября 2019, 18:32 »
Спасибо! Больше никто не отзовётся?  ::)
57
Решение.
Определим напряженность электрического поля на расстоянии r1 от оси цилиндра, точка находится внутри цилиндра (r1 < R).
 Объёмную плотность энергии цилиндра определим по формуле:
\[ \rho =\frac{q}{V}(1),V=\pi \cdot {{R}^{2}}\cdot h(2),q=\rho \cdot \pi \cdot {{R}^{2}}\cdot h(3). \]
Напряженность поля равномерно заряженного бесконечно длинного цилиндра, вычисленная с помощью теоремы Остроградского –Гаусса определяется по формулам
\[ \begin{align}
  & \oint{E\cdot dS}=\frac{q}{\varepsilon \cdot {{\varepsilon }_{0}}}.dS=2\cdot \pi \cdot r\cdot h,E=\frac{q}{2\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot r\cdot h},E=\frac{\rho \cdot \pi \cdot {{r}^{2}}\cdot h}{2\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot r\cdot h},E=\frac{\rho \cdot r}{2\cdot \varepsilon \cdot {{\varepsilon }_{0}}}(4). \\
 & {{E}_{1}}=\frac{6,7\cdot {{10}^{-4}}\cdot 1,5\cdot {{10}^{-2}}}{2\cdot 4\cdot 8,85\cdot {{10}^{-12}}}=0,142\cdot {{10}^{6}}. \\
\end{align} \]
ε – диэлектрическая проницаемость рассматриваемой области, ε0 = 8,854∙10-12 Ф/м – электрическая постоянная.
Определим напряженность электрического поля на расстоянии r2 от оси цилиндра, точка находится вне цилиндра (r2 > R).
\[ \begin{align}
  & q=\rho \cdot \pi \cdot {{R}^{2}}\cdot h, \\
 & \oint{E\cdot dS}=\frac{q}{\varepsilon \cdot {{\varepsilon }_{0}}}.dS=2\cdot \pi \cdot r\cdot h,E=\frac{q}{2\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot r\cdot h},E=\frac{\rho \cdot \pi \cdot {{R}^{2}}\cdot h}{2\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot r\cdot h},E=\frac{\rho \cdot {{R}^{2}}}{2\cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot r}(4). \\
 & {{E}_{2}}=\frac{6,7\cdot {{10}^{-4}}\cdot {{(6\cdot {{10}^{-2}})}^{2}}}{2\cdot 1\cdot 8,85\cdot {{10}^{-12}}\cdot 10\cdot {{10}^{-2}}}=1,36\cdot {{10}^{6}}. \\
\end{align}
 \]
Определим потенциал электрического поля на расстоянии r1 от оси цилиндра, точка находится внутри цилиндра (r1 < R). Потенциал на оси цилиндра равен 0.
\[  \begin{align}
  & {{\varphi }_{1}}=-\int\limits_{0}^{{{r}_{1}}}{Edr=-}\int\limits_{0}^{{{r}_{1}}}{\frac{\rho \cdot r}{2\cdot \varepsilon \cdot {{\varepsilon }_{0}}}dr=-\frac{\rho }{2\cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot \left. \frac{{{r}^{1+1}}}{1+1} \right|_{0}^{{{r}_{1}}}}=-\frac{\rho }{2\cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot \frac{r_{1}^{2}}{2}. \\
 & {{\varphi }_{1}}=-\frac{6,7\cdot {{10}^{-4}}}{2\cdot 4\cdot 8,85\cdot {{10}^{-12}}}\cdot (\frac{1,5\cdot {{10}^{-2}}}{2})=-0,07\cdot {{10}^{6}}. \\
\end{align} \]
Потенциал на поверхности цилиндра равен
\[ {{\varphi }_{R}}=-\int\limits_{0}^{R}{Edr=-}\int\limits_{0}^{R}{\frac{\rho \cdot r}{2\cdot \varepsilon \cdot {{\varepsilon }_{0}}}dr=-\frac{\rho }{2\cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot \left. \frac{{{r}^{1+1}}}{1+1} \right|_{0}^{R}}=-\frac{\rho \cdot {{R}^{2}}}{4\cdot \varepsilon \cdot {{\varepsilon }_{0}}}. \]
Определим потенциал электрического поля на расстоянии r2 от оси цилиндра, точка находится вне цилиндра (r2 > R).
\[
\begin{align}
  & {{\varphi }_{2}}=\varphi (R)-\int\limits_{R}^{{{r}_{2}}}{Edr=}-\frac{\rho \cdot {{R}^{2}}}{4\cdot \varepsilon \cdot {{\varepsilon }_{0}}}-\int\limits_{R}^{{{r}_{2}}}{\frac{\rho \cdot {{R}^{2}}}{2\cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot r}dr=-\frac{\rho \cdot {{R}^{2}}}{4\cdot \varepsilon \cdot {{\varepsilon }_{0}}}-\frac{\rho \cdot {{R}^{2}}}{2\cdot \varepsilon \cdot {{\varepsilon }_{0}}}}\cdot \ln \frac{{{r}_{2}}}{R}. \\
 & {{\varphi }_{2}}=-\frac{\rho \cdot {{R}^{2}}}{4\cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot (1+2\cdot \ln \frac{{{r}_{2}}}{R}). \\
 & {{\varphi }_{2}}=-\frac{6,7\cdot {{10}^{-4}}\cdot {{(6\cdot {{10}^{-2}})}^{2}}}{4\cdot 1\cdot 8,85\cdot {{10}^{-12}}}\cdot (1+2\cdot ln\frac{10\cdot {{10}^{-2}}}{6\cdot {{10}^{-2}}})=-0,138\cdot {{10}^{6}}. \\
\end{align}
 \]
Определим разность потенциалов между этими точками
φ1 – φ2 = -0,07∙106 + 0,138∙106 = 0,068∙106 В.
Ответ: 0,142 МВ/м, 1,36 МВ/м, 0,068 МВ.
58
2. Объёмная плотность заряда равномерно заряженного бесконечно длинного цилиндра радиусом R = 6 см, изготовленного из диэлектрика с проницаемостью ε = 4, равна ρ = 6,7∙10-4 Кл/м3. Найти напряжённость E электрического поля в точках, находящихся на расстояниях r1 = 1,5 см и r2 = 10 см от оси цилиндра. Найти разность потенциалов между этими точками. Сделать рисунок.
59
Решение.
1). Напряженность внутри первой сферы равна нулю, энергия внутри первой сферы равна нулю.
W1 = 0.
2). Определим энергию электростатического поля, заключённого между сферами
Объемную плотность энергии можно определить по формулам:
\[ w=\frac{dW}{dV}(1),w=\frac{1}{2}\cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{E}^{2}}(2). \]
ε – диэлектрическая проницаемость рассматриваемой области, ε0 = 8,854∙10-12 Ф/м – электрическая постоянная.
dV – элемент объема, элемент объема выразим через радиус элементарного сферического слоя.
dV = 4∙π∙r2∙dr      (3).
По теореме Гаусса поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду:
\[ \begin{align}
  & \oint{E\cdot dS}=\frac{q}{\varepsilon \cdot {{\varepsilon }_{0}}}.dS=4\cdot \pi \cdot {{r}^{2}},E=\frac{q}{4\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{r}^{2}}}(4). \\
 & dW=wdV,dW=\frac{\varepsilon \cdot {{\varepsilon }_{0}}\cdot {{E}^{2}}}{2}dV,dW=\frac{{{q}^{2}}}{32\cdot {{\pi }^{2}}\cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{r}^{4}}}\cdot 4\cdot \pi \cdot {{r}^{2}}dr, \\
 & dW=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}\cdot {{r}^{2}}}\cdot dr(5). \\
\end{align} \]
\[ \begin{align}
  & {{W}_{2}}=\int\limits_{{{R}_{1}}}^{{{R}_{2}}}{\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot \frac{1}{{{r}^{2}}}dr}=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}}\left. \cdot \frac{{{r}^{-2+1}}}{-2+1} \right|_{{{R}_{1}}}^{{{R}_{2}}}=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot (\frac{1}{{{R}_{1}}}-\frac{1}{{{R}_{2}}}). \\
 & {{W}_{2}}=\frac{{{(5\cdot {{10}^{-6}})}^{2}}}{8\cdot 3,14\cdot 5\cdot 8,85\cdot {{10}^{-12}}}\cdot (\frac{2-1}{2\cdot 1})=0,01125. \\
\end{align} \]
3). Определим энергию электростатического поля, заключённую в окружающем сферы пространстве
\[ \begin{align}
  & {{W}_{3}}=\int\limits_{{{R}_{2}}}^{\infty }{\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot \frac{1}{{{r}^{2}}}dr}=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}}\left. \cdot \frac{{{r}^{-2+1}}}{-2+1} \right|_{{{R}_{2}}}^{\infty }=\frac{{{q}^{2}}}{8\cdot \pi \cdot \varepsilon \cdot {{\varepsilon }_{0}}}\cdot \frac{1}{{{R}_{2}}}. \\
 & {{W}_{3}}=\frac{{{(5\cdot {{10}^{-6}})}^{2}}}{8\cdot 3,14\cdot 1\cdot 8,85\cdot {{10}^{-12}}}\cdot \frac{1}{2}=0,05623. \\
\end{align} \]
Определим энергию электрического поля, созданного сферами во всём пространстве
W = W1 + W2 + W3. W = 0 + 0,01125 + 0,05623 = 0,06748.
Ответ: 0,06748 Дж.
60
Решение.
По условию задачи предметы небольшие, их можно принять за точечные заряды.
Запишем закон Кулона и определим произведение модулей зарядов
\[ {{F}_{1}}=\frac{k\cdot \left| {{q}_{1}} \right|\cdot \left| {{q}_{2}} \right|}{{{r}^{2}}},\left| {{q}_{1}} \right|\cdot \left| {{q}_{2}} \right|=\frac{{{F}_{1}}\cdot {{r}^{2}}}{k}(1).
 \]
Предмет А отдаляют от предмета В, определим силу отталкивания после смещения
\[ \begin{align}
  & {{r}_{2}}=r+\Delta r\,(2),{{F}_{2}}=\frac{k\cdot \left| {{q}_{1}} \right|\cdot \left| {{q}_{2}} \right|}{r_{2}^{2}},{{F}_{2}}=\frac{k\cdot \left| {{q}_{1}} \right|\cdot \left| {{q}_{2}} \right|}{{{(r+\Delta r)}^{2}}},{{F}_{2}}=\frac{k}{{{(r+\Delta r)}^{2}}}\cdot \frac{{{F}_{1}}\cdot {{r}^{2}}}{k},{{F}_{2}}=\frac{{{F}_{1}}\cdot {{r}^{2}}}{{{(r+\Delta r)}^{2}}}(3). \\
 & {{F}_{2}}=\frac{4\cdot {{10}^{-5}}\cdot {{(4\cdot {{10}^{-2}})}^{2}}}{{{(4\cdot {{10}^{-2}}+3\cdot {{10}^{-2}})}^{2}}}=1,3\cdot {{10}^{-5}}. \\
\end{align} \]
Предмет А приближают к предмету В, определим силу отталкивания после смещения
\[ \begin{align}
  & {{r}_{3}}=r-\Delta r(2),{{F}_{3}}=\frac{k\cdot \left| {{q}_{1}} \right|\cdot \left| {{q}_{2}} \right|}{r_{3}^{2}},{{F}_{3}}=\frac{k\cdot \left| {{q}_{1}} \right|\cdot \left| {{q}_{2}} \right|}{{{(r-\Delta r)}^{2}}},{{F}_{3}}=\frac{k}{{{(r-\Delta r)}^{2}}}\cdot \frac{{{F}_{1}}\cdot {{r}^{2}}}{k},{{F}_{3}}=\frac{{{F}_{1}}\cdot {{r}^{2}}}{{{(r-\Delta r)}^{2}}}(3). \\
 & {{F}_{3}}=\frac{4\cdot {{10}^{-5}}\cdot {{(4\cdot {{10}^{-2}})}^{2}}}{{{(4\cdot {{10}^{-2}}-3\cdot {{10}^{-2}})}^{2}}}=64\cdot {{10}^{-5}}. \\
\end{align} \]
Максимальная сила отталкивания 64∙10-5 Н, минимальная 1,3∙10-5 Н.
Страницы: 1 ... 4 5 [6] 7 8 ... 10