Форум сайта alsak.ru

Задачи и вопросы по физике => Механика => Работа. Мощность => Тема начата: Антон Огурцевич от 11 Апреля 2016, 23:01

Название: Охотничья собака
Отправлено: Антон Огурцевич от 11 Апреля 2016, 23:01
1. Охотничья собака массой 10 кг на расстоянии в 30 м увеличивает скорость бега с 1 м/с до 15 м/с. Определить среднюю мощность, развиваемую собакой при беге. Биофизика. Сделать рисунок.
Название: Re: Охотничья собака
Отправлено: Эдуард от 12 Апреля 2016, 08:37
Решение
Средняя развиваемая мощность \[ \langle P\rangle =\frac{A}{t}.(1)  \]
Работа силы тяги \[ A={{F}_{T}}\cdot s.(2)  \]
Используя второй закон Ньютона, найдем силу тяги:
\[ \begin{align}
  & {{{\vec{F}}}_{T}}+\vec{N}+m\vec{g}=m\vec{a}.(3) \\
 & Ox:{{F}_{T}}=ma.(4) \\
 & a=\frac{\upsilon _{2}^{2}-\upsilon _{1}^{2}}{2s}=\frac{{{15}^{2}}-{{1}^{2}}}{2\cdot 30}\approx 3,73\frac{м}{{{с}^{2}}}.(5) \\
 & t=\frac{{{\upsilon }_{2}}-{{\upsilon }_{1}}}{a}=\frac{15-1}{3,73}\approx 3,75c.(6) \\
\end{align}  \]
Поставляем (5) в (4), (4) в (2), (2) и (6) в (1)
\[ \begin{align}
  & \langle P\rangle =\frac{A}{t}=\frac{{{F}_{T}}\cdot s}{t}=\frac{m\cdot a\cdot s}{t}. \\
 & \langle P\rangle =\frac{10\cdot 3,73\cdot 30}{3,75}\approx 298,4 Вт. \\
\end{align} \]
Ответ: 298,4 Вт.