Форум сайта alsak.ru
		Задачи и вопросы по физике => Механика => Гидростатика => : Антон Огурцевич  15 March 2016, 14:44
		
			
			- 
				8. В боковую поверхность сосуда вставлен горизонтальный капилляр, внутренний радиус которого r = 1 мм и длина l = 1,5 см. В сосуд налит глицерин, динамическая вязкость которого η = 1 Па•с. Уровень глицерина в сосуде поддерживается постоянным на высоте h = 0,18 м выше капилляра. Какое время потребуется на то, чтобы из капилляра вытек объём глицерина V = 5 см3? Сделать рисунок.
			
- 
				Решение: 
 Скорость понижения уровня глицерина в сосуде зависит от скорости протекания глицерина через капилляр. Объем глицерина, протекающего за время t через капилляр определяется формулой Пуазейля \[ V=\frac{\pi {{r}^{4}}t\Delta P}{8l\eta }.(1)  \]
 Разность давлений на концах капилляра обусловлена гидростати¬ческим давлением слоя жидкости, т. е. \[ \Delta P=\rho gh.(2)  \]
 С другой стороны,\[ V=S\upsilon t=\pi {{r}^{2}}\upsilon t,(3)  \]
 где υ - скорость протекания глицерина через капилляр. Из (1) - (3) имеем \[ \upsilon =\frac{V}{\pi {{r}^{2}}t}=\frac{\pi {{r}^{4}}t\Delta P}{8l\eta }\cdot \frac{1}{\pi {{r}^{2}}t}=\frac{{{r}^{2}}\rho gh}{8l\eta }.  \]
 Время вытекания объема V глицерина \[ t=\frac{V}{\pi {{r}^{2}}\upsilon }=\frac{8Vl\eta }{\pi {{r}^{2}}{{r}^{2}}\rho gh}=\frac{8\cdot 5\cdot {{10}^{-6}}\cdot 1,5\cdot {{10}^{-2}}\cdot 1}{3,14\cdot {{(1\cdot {{10}^{-3}})}^{4}}\cdot 1,2\cdot {{10}^{3}}\cdot 10\cdot 0,18}\approx 90c.  \]
 Ответ: 1,5мин.