Решение.
Рассмотрим три случая, в каждом случае будем находить количество теплоты которое выделяется в резисторах R1 и R2 соответственно.
1) замыкают ключ К1, ждут в течение времени t1.\[ \begin{align}
& {{R}_{o}}=R+{{R}_{1}}+{{R}_{3}}\ \ \ (1),\ I=\ \frac{E}{R+{{R}_{1}}+{{R}_{3}}}\ \ (2),\ {{Q}_{11}}={{I}^{2}}\cdot {{R}_{1}}\cdot {{t}_{1}},\ {{Q}_{11}}={{(\frac{E}{R+{{R}_{1}}+{{R}_{3}}})}^{2}}\cdot {{R}_{1}}\cdot {{t}_{1}}\ \ \ (3). \\
& {{Q}_{21}}=0\ \ \ (4). \\
\end{align} \]
2) замыкают ключ К2, ждут в течение времени t2.\[ \begin{align}
& {{R}_{13}}={{R}_{1}}+{{R}_{3}}\ \ \ (5),\ {{R}_{24}}={{R}_{2}}+{{R}_{4}}\ \ \ (6),\ {{R}_{14}}=\frac{{{R}_{13}}\cdot {{R}_{24}}}{{{R}_{13}}+{{R}_{24}}},\ {{R}_{14}}=\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}\ \ \ (7), \\
& {{R}_{0}}=R+{{R}_{14}},\ {{R}_{0}}=R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}\ \ \ (8),\ {{U}_{14}}={{U}_{13}}={{U}_{24}}\ \ \ (9),\ \\
& I=\frac{E}{{{R}_{0}}},\ I=\frac{E}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\ \ \ (10). \\
\end{align} \]
\[ \begin{align}
& {{U}_{14}}=I\cdot {{R}_{14}},\ {{U}_{14}}=\frac{E}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\cdot \frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}\ \ \ (11),\ {{I}_{1}}=\frac{{{U}_{14}}}{{{R}_{1}}+{{R}_{3}}}, \\
& {{I}_{1}}=\frac{E}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\cdot \frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}\cdot (\frac{1}{{{R}_{1}}+{{R}_{3}}})\ \ \ (12), \\
& {{Q}_{12}}=I_{1}^{2}\cdot {{R}_{1}}\cdot {{t}_{2}},\ {{Q}_{12}}={{(\frac{E}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\cdot \frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}\cdot (\frac{1}{{{R}_{1}}+{{R}_{3}}}))}^{2}}\cdot {{R}_{1}}\cdot {{t}_{2}}\ \ \ \ (13). \\
\end{align} \]
\[ \begin{align}
& {{I}_{2}}=\frac{{{U}_{14}}}{{{R}_{2}}+{{R}_{4}}},{{I}_{2}}=\frac{E}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\cdot \frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}\cdot (\frac{1}{{{R}_{2}}+{{R}_{4}}})\ \ \ (14), \\
& {{Q}_{22}}=I_{1}^{2}\cdot {{R}_{1}}\cdot {{t}_{2}},\ {{Q}_{22}}={{(\frac{E}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\cdot \frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}\cdot (\frac{1}{{{R}_{2}}+{{R}_{4}}}))}^{2}}\cdot {{R}_{2}}\cdot {{t}_{2}}\ \ \ \ (15). \\
\end{align} \]
3) размыкают ключ К1, ждут в течение времени t3, размыкают ключ К2.\[ \begin{align}
& {{R}_{o}}=R+{{R}_{2}}+{{R}_{4}}\ \ \ (16),\ I=\ \frac{E}{R+{{R}_{2}}+{{R}_{4}}}\ \ (17),\ {{Q}_{23}}={{I}^{2}}\cdot {{R}_{2}}\cdot {{t}_{3}},\ {{Q}_{23}}={{(\frac{E}{R+{{R}_{2}}+{{R}_{4}}})}^{2}}\cdot {{R}_{2}}\cdot {{t}_{3}}\ \ \ (18). \\
& {{Q}_{13}}=0\ \ \ (19). \\
\end{align} \]
Определим отношение Q1/Q2 количеств теплоты, выделившихся за время эксперимента на резисторах R1 и R2 соответственно.\[ \begin{align}
& \frac{{{Q}_{1}}}{{{Q}_{2}}}=\frac{{{Q}_{11}}+{{Q}_{12}}+{{Q}_{13}}}{{{Q}_{21}}+{{Q}_{22}}+{{Q}_{23}}}, \\
& \frac{{{Q}_{1}}}{{{Q}_{2}}}=\frac{{{(\frac{E}{R+{{R}_{1}}+{{R}_{3}}})}^{2}}\cdot {{R}_{1}}\cdot {{t}_{1}}+{{(\frac{E}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\cdot \frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}\cdot (\frac{1}{{{R}_{1}}+{{R}_{3}}}))}^{2}}\cdot {{R}_{1}}\cdot {{t}_{2}}\ +0\ }{0+{{(\frac{E}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\cdot \frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}\cdot (\frac{1}{{{R}_{2}}+{{R}_{4}}}))}^{2}}\cdot {{R}_{2}}\cdot {{t}_{2}}+{{(\frac{E}{R+{{R}_{2}}+{{R}_{4}}})}^{2}}\cdot {{R}_{2}}\cdot {{t}_{3}}}= \\
& =\frac{{{(\frac{1}{R+{{R}_{1}}+{{R}_{3}}})}^{2}}\cdot {{R}_{1}}\cdot {{t}_{1}}+{{(\frac{1}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\cdot \frac{({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})})}^{2}}\cdot {{R}_{1}}\cdot {{t}_{2}}\ \ }{{{(\frac{1}{R+\frac{({{R}_{1}}+{{R}_{3}})\cdot ({{R}_{2}}+{{R}_{4}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})}}\cdot \frac{({{R}_{1}}+{{R}_{3}})}{({{R}_{1}}+{{R}_{3}})+({{R}_{2}}+{{R}_{4}})})}^{2}}\cdot {{R}_{2}}\cdot {{t}_{2}}+{{(\frac{1}{R+{{R}_{2}}+{{R}_{4}}})}^{2}}\cdot {{R}_{2}}\cdot {{t}_{3}}}. \\
\end{align}
\]