Решение.\[ \begin{align}
  & dQ={{I}^{2}}\cdot Rdt,\ I=k\cdot t,\ k=\frac{{{I}_{\max }}-{{I}_{0}}}{\tau },\  \\ 
 & Q=\int{dQ=\int\limits_{0}^{\tau }{{{k}^{2}}}}\cdot R\cdot {{t}^{2}}dt=\frac{1}{3}\cdot {{k}^{2}}\cdot R\cdot {{\tau }^{3}}, \\ 
 & Q=\frac{1}{3}\cdot {{(\frac{{{I}_{\max }}-{{I}_{0}}}{\tau })}^{2}}\cdot R\cdot {{\tau }^{3}}=\frac{1}{3}\cdot {{({{I}_{\max }}-{{I}_{0}})}^{2}}\cdot R\cdot \tau . \\ 
\end{align}
 \]
Q = 4167 Дж.