Задачи и вопросы по физике > Тестирование 2012/2013

Репетиционное тестирование 1 этап 2012/2013

(1/7) > >>

alsak:
Здесь вы можете обменяться ответами и решениями по РТ-1 2012-2013 (варианты 1 и 2), задать вопросы.

Вариант 1 А1 А2 А3 А4 А5 А6 А7 А8 А9 А10 5 3 1 3 4 2 4 3 2   5 А11 А12 А13 А14 А15 А16 А17 А18 3 2 2 2 4 3 2 1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 16 14 35 18 10 30 320 50 100 42 357 30
Вариант 2 А1 А2 А3 А4 А5 А6 А7 А8 А9 А10 5 3 3 4 1 4 4 2 2 1 А11 А12 А13 А14 А15 А16 А17 А18 3 1 4 2 3 4 2 3 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 20 13 40 14 700 60 500 100 10 35 425 60

djeki:
В1. Вариант 1
Первую половину времени автомобиль двигался со скоростью, модуль которой υ1 = 12 м/с, а вторую – со скоростью, модуль которой υ2 = 20 м/с. Средняя путевая скорость автомобиля <υ> за все время движения равна…м/с
В1. Вариант 2
Автомобиль первую половину пути двигался со скоростью, модуль которой υ1 = 15 м/с, а вторую – со скоростью, модуль которой υ2 = 30 м/с. Средняя путевая скорость автомобиля <υ> за все время движения равна…м/с
Решение.
Средней путевой скоростью <υ>  называется отношение пройденного пути ко времени, за который он был пройден:
Пусть s – путь пройденный автомобилем, t – время движения автомобиля, t1, t2 – время прохождения автомобилем частей пути s1, s2
Считая движение автомобиля на участках пути равномерным, найдем что:
Вариант 1
\[ \begin{align}
  & <\upsilon >=\frac{s}{t}=\frac{{{s}_{1}}+{{s}_{2}}}{{{t}_{1}}+{{t}_{2}}}=\frac{{{s}_{1}}+{{s}_{2}}}{\frac{1}{2}\cdot t+\frac{1}{2}\cdot t}=\frac{{{s}_{1}}+{{s}_{2}}}{t} \\
 & {{s}_{1}}={{\upsilon }_{1}}\cdot {{t}_{1}}=\frac{1}{2}\cdot {{\upsilon }_{1}}\cdot t;{{s}_{2}}={{\upsilon }_{2}}\cdot {{t}_{2}}=\frac{1}{2}\cdot {{\upsilon }_{2}}\cdot t \\
 & <\upsilon >=\frac{{{\upsilon }_{1}}+{{\upsilon }_{2}}}{2} \\
\end{align}.

 \]
Вариант 2
\[ \begin{align}
  & <\upsilon >=\frac{s}{t}=\frac{{{s}_{1}}+{{s}_{2}}}{{{t}_{1}}+{{t}_{2}}}=\frac{\frac{1}{2}\cdot s+\frac{1}{2}\cdot s}{{{t}_{1}}+{{t}_{2}}}=\frac{s}{{{t}_{1}}+{{t}_{2}}} \\
 & {{t}_{1}}=\frac{{{s}_{1}}}{{{\upsilon }_{1}}}=\frac{s}{2\cdot {{\upsilon }_{1}}};{{t}_{2}}=\frac{{{s}_{2}}}{{{\upsilon }_{2}}}=\frac{s}{2\cdot {{\upsilon }_{2}}} \\
 & <\upsilon >=\frac{s}{\frac{s}{2\cdot {{\upsilon }_{1}}}+\frac{s}{2\cdot {{\upsilon }_{2}}}}=\frac{2\cdot {{\upsilon }_{1}}\cdot {{\upsilon }_{2}}}{{{\upsilon }_{1}}+{{\upsilon }_{2}}} \\
\end{align}

 \]
<υ> = 20 м/с

djeki:
В2. Вариант 1
С некоторой высоты в горизонтальном направлении бросили металлический шарик со скоростью, модуль которой υ0 = 17 м/с. Через промежуток времени Δt = 0,80 с после момента броска модуль перемещения Δr падающего шарика равен ….м
В2. Вариант 2
С некоторой высоты в горизонтальном направлении бросили металлический шарик со скоростью, модуль которой υ0 = 12 м/с. Через промежуток времени Δt = 1,0 с после момента броска модуль перемещения Δr падающего шарика равен ….м
Решение.
Точку, из которой брошен шарик, примем за начало координат, ось OX проведем горизонтально,  ось OY – вертикально вниз. В этой системе координат движение шарика можно представить как результат сложения двух прямолинейных движений: равномерного движения со скоростью   \( {{\vec{\upsilon }}_{x}}={{\vec{\upsilon }}_{0}}  \) в горизонтальном направлении и равноускоренного движения с ускорением \( \vec{g}  \) в вертикальном направлении, так как на шарик  действует только сила тяжести, направленная вертикально вниз. За промежуток времени Δt шарик переместиться на y вдоль оси OY и на х вдоль оси ОХ и окажется в точке А. Уравнения, определяющие зависимость координат х, у от времени, запишутся так:
\[ x={{\upsilon }_{0}}\cdot t;y=\frac{g\cdot {{t}^{2}}}{2} \]
Перемещение Δr – вектор, соединяющий начальную и конечную точки траектории за данный промежуток времени.
\[ \Delta r=\sqrt{{{x}^{2}}+{{y}^{2}}}=\sqrt{{{({{\upsilon }_{0}}\cdot t)}^{2}}+{{\left( \frac{g\cdot {{t}^{2}}}{2} \right)}^{2}}}=t\cdot \sqrt{\upsilon _{0}^{2}+\frac{{{g}^{2}}\cdot {{t}^{2}}}{4}} \]
Вариант 1
Δr = 14 м
Вариант 2
Δr = 13 м

djeki:
В3. Вариант 1
При помощи гидравлического подъемника поднимают груз. Площадь большего поршня подъемника  превышает площадь малого в k = 200 раз, а перемещение малого поршня за один ход Δh1 = 10 см. Если совершить N = 700 ходов малым поршнем, то груз поднимется на высоту Δh2, равную …см
В3. Вариант 2
При помощи гидравлического подъемника поднимают груз. Площадь большего поршня подъемника  превышает площадь малого в k = 150 раз, а перемещение малого поршня за один ход Δh1 = 6,0 см. Если совершить N = 1000 ходов малым поршнем, то груз поднимется на высоту Δh2, равную …см
Решение.
Запишем условие несжимаемости жидкости:
\[ \Delta {{V}_{1}}=\Delta {{V}_{2}};{{S}_{1}}\cdot \Delta {{h}_{1}}={{S}_{2}}\cdot \Delta {{h}_{21}} \]
где ΔV1, ΔV2 – изменения объемов жидкости в левой и правой частях подъемника, S1,S2 – площади поршней, Δh1, Δh21 – изменения высот жидкости в левой и правой частях подъемника. Тогда
\[ \Delta {{h}_{21}}=\frac{{{S}_{1}}\cdot \Delta {{h}_{1}}}{{{S}_{2}}}=\frac{{{S}_{1}}\cdot \Delta {{h}_{1}}}{k\cdot {{S}_{1}}}=\frac{\Delta {{h}_{1}}}{k} \]
Изменение высоты Δh2 за N ходов малого поршня составит
\[ \Delta {{h}_{2}}=N\cdot \Delta {{h}_{21}}=N\cdot \frac{\Delta {{h}_{1}}}{k} \]
Вариант 1
Δh2 = 35 cм
Вариант 2
Δh2 = 40 cм

djeki:
В5. Вариант 1
В баллоне вместимостью V = 6,0 м3 находится идеальный одноатомный газ под давлением р = 0,20 МПа. Если средняя квадратичная скорость поступательного движения его молекул <υкв> = 0,60 км/с, то масса m газа в баллоне равна…. кг
В5. Вариант 2
В баллоне вместимостью V = 4,90 м3 находится идеальный одноатомный газ под давлением р = 200 кПа. Если масса газа в баллоне m = 6,00 кг, то средняя квадратичная скорость <υкв> поступательного движения равна…. м/с
Решение.
Средняя квадратичная скорость молекул газа
\[ <{{\upsilon }_{k}}>=\sqrt{\frac{3\cdot k\cdot T}{{{m}_{0}}}=}\sqrt{\frac{3\cdot k\cdot T\cdot {{N}_{A}}}{M}}=\sqrt{\frac{3\cdot R\cdot T}{M}} \]
Здесь мы учли что
\[ {{m}_{0}}=\frac{M}{{{N}_{A}}};R=k\cdot {{N}_{A}} \]
Из уравнения Менделеева-Клайперона легко видеть, что
\[ p\cdot V=m\cdot \frac{R\cdot T}{M};\frac{R\cdot T}{M}=\frac{p\cdot V}{m} \]
Тогда
Вариант 1
\[ <{{\upsilon }_{k}}>=\sqrt{\frac{3\cdot p\cdot V}{m}};m=\frac{3\cdot p\cdot V}{<{{\upsilon }_{k}}{{>}^{2}}} \]
m = 10 кг
Вариант 2
\[ <{{\upsilon }_{k}}>=\sqrt{\frac{3\cdot p\cdot V}{m}} \]
<υкв> = 700 м/с

Навигация

[0] Главная страница сообщений

[#] Следующая страница

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Перейти к полной версии