Сакович А.Л. Точки равного потенциала

 

Сакович А.Л. Точки равного потенциала // Фізіка. Праблемы выкладання. – 2007. – №2. – С. 40-45.

Авторский вариант

 

 

В литературе описано несколько методов преобразования электрических цепей [1; 2; 3]. В этих статьях описаны и методы упрощения схем, имеющих точки равного потенциала. Но при решении подобных задач авторы обычно пишут так: «Из симметрии ветвей цепи видно, что точки В и D имеют равные потенциалы» [2], хотя эта видимость не совсем очевидна.

Рассмотрим способы нахождения точек одинакового потенциала более подробно. Пусть нам дана электрическая цепь, состоящая из сопротивлений R1, R2, …, R8 (рис. 1 а). Проведем через точки подключения цепи прямую АВ (рис. 1 б).

1 способ. Если схема содержит проводники с одинаковым сопротивлением, расположенные симметрично относительно определенной оси или плоскости, то концы этих проводников имеют одинаковый потенциал. При этом точки будут симметричными относительно прямой АВ, если равны сопротивления участков цепи между данными точками и любыми точками этой прямой.

Используя этой признак, можно сделать вывод, что точки С1 и С2 (рис. 1 б) будут симметричны относительно прямой АВ, если R1 = R2 (сопротивления между точкой А и С1 и между точкой А и С2 равны) и R5 = R6 (сопротивления между точкой В и С1 и между точкой В и С2 равны). Аналогично, точки С3 и С4 будут симметричны относительно прямой АВ, если R3 = R4 и R7 = R8.

рисунок 1а
а.
рисунок 1б
б.
Рис. 1.

2 способ. Точки имеют одинаковый потенциал, если равны отношения сопротивлений между данными точками и точками подключения.

Например, точки С1 и С2 (рис. 1 а) имеют одинаковый потенциал, если формула. Аналогично, точки С3 и С4 имеют одинаковый потенциал, если формула.

Покажем на примерах, как можно использовать эти способы для преобразования электрических цепей.

Метод объединения равнопотенциальных узлов:точки с одинаковыми потенциалами можно соединять в узлы.

 

Пример 1. Определите сопротивление электрической цепи (рис. 2), если: а) R1 = R3 = 2R, R2 = R4 = R, R5 = 3R; б) R1 = R4 = 2R, R2 = 4R, R3 = R, R5 = 5R.


Рис. 2.

а) Если провести через точки подключения прямую АВ (рис. 3 а), то равны сопротивления участков АС1 и АС2 (R1 = R3), и равны сопротивления участков ВС1 и ВС2 (R2 = R4). Следовательно, точки С1 и С2 симметричны относительно прямой АВ и имеют равные потенциалы.

Точки с одинаковыми потенциалами можно соединять в узлы (рис. 3, б). Резисторы R1 и R3 соединены параллельно, и резисторы R2 и R4 – параллельно, участки 1/3 и 2/4 последовательно. Следовательно,

формула

б) Если провести прямую АВ (рис. 3 а), то сопротивления участков АС1 и АС2 не равны формула, следовательно, точки С1 и С2 не симметричны относительно прямой АВ. НО точки С1 и С2имеют равные потенциалы, т.к.  .

Точки с одинаковыми потенциалами можно соединять в узлы (рис. 3 б). Резисторы R1 и R3 соединены параллельно, и резисторы R2 и R4 – параллельно, участки 1/3 и 2/4 последовательно. Следовательно,

формула
формула
а

б
Рис. 3.

Пример 2. Найдите сопротивление проволочного куба между точками А1 и В3 (рис. 4). Сопротивление каждого ребра R0.


Рис. 4.

Рис. 5.

Проведем через точки подключения прямую А1В3 (рис. 5). Равны сопротивления (равны длины – ребра) участков А1В1, А1А2 и А1А4, и равны сопротивления (равны длины – диагонали) участков В3В1, В3А2 и В3А4. Следовательно точки В1, А2 и А4 симметричны относительно прямой А1В3 и имеют равные потенциалы. Равны сопротивления участков А1А3, А1В2 и А1В4, и равны сопротивления участков В3А3, В3В2 и В3В4. Следовательно точки А3, В2 и В4 симметричны относительно прямой А1В3 и имеют равные потенциалы.

Точки с одинаковыми потенциалами можно соединять в узлы (рис. 6). Три резистора R0 соединены параллельно между точками А1 и А2 (В1, А4), шесть резисторов R0 – параллельно между точками А2 (В1, А4) и А3 (В2, В4), три резистора R0 – параллельно между точками А3 (В2, В4) и В3, участки между этими точками соединены последовательно. Следовательно,

.

Рис. 6.

 

Пример 3. Найдите сопротивление проволочного куба между точками А1 и В2 (рис. 4). Сопротивление каждого ребра R0.

Проведем через точки подключения прямую А1В2 (рис. 7 а). Равны сопротивления (равны длины – ребра) участков А1В1, А1А2, и равны сопротивления (равны длины – ребра) участков В2В1, В2А2. Следовательно точки В1 и А2 симметричны относительно прямой А1В2 и имеют равные потенциалы. Равны сопротивления участков А1А3 и А1В4, и равны сопротивления участков В2А3 и В2В4. Следовательно, точки А3 и В4А1  симметричны относительно прямой В2 и имеют равные потенциалы.

Точки с одинаковыми потенциалами можно соединять в узлы (рис. 7 б). Используя рекуррентный метод, схему можно упростить (рис. 7 в или г).

Точки А2 и В4имеют равные потенциалы, т.к. . Точки с одинаковыми потенциалами можно соединять в узлы (рис. 7 д). Резисторы на участке А1А2 соединены параллельно, и резисторы на участке А2В2 – параллельно, а эти участки соединены последовательно. Следовательно,



а

б

в

г

д
Рис. 7.

Если возможно объединение двух равнопотенциальных узлов, то возможен и обратный переход.

Метод разделения узлов: узел схемы можно разделить на два или несколько узлов, если получившиеся при этом узлы имеют одинаковые потенциалы.

Обязательным условием при этом является проверка получившихся при разделении узлов на равенство потенциалов (симметричность или пропорциональность сопротивлений).

 

Пример 4. Найдите сопротивление цепи, которая представляет собой каркас из одинаковых отрезков проволоки (рис. 8) сопротивлением R0 каждый.


Рис. 8.

 

Разделим узел в середине каркаса на два узла О1 и О2 так, как показано на рис. 9 а. Это можно сделать, так как точки О1 и О2 имеют равные потенциалы: равны сопротивления участков AO1, AO2, и равны сопротивления участков BO1, BO2. Перерисуем схему в стандартный вид (рис. 9 б). Используя рекуррентный метод, схему можно упростить (рис. 9 в), т.к. сопротивление участка C1F1 равно  , аналогично  . Тогда общее сопротивление цепи равно  .

Обратите внимание. С точки зрения геометрии точки О3 и О4 симметричны относительно прямой а (рис. 9 г), но потенциалы этих точек не равны, т.к. сопротивления участков АО3 и АО4 не равны, а отношения сопротивлений участков АО3 и АО4 не равны отношению сопротивлений участков ВО3 и ВО4.


а

б

в

г
Рис. 9.

 

Пример 5. Найти сопротивление цепи, которая представляет собой каркас из одинаковых отрезков проволоки (рис. 10) сопротивлением R0 каждый.



Рис. 10.

Разделим узел в середине каркаса на три узла О1, О2 и О3 так, как показано на рис. 11 а. Это можно сделать, так как точки О1, О2 и О3 имеют равные потенциалы: равны сопротивления участков AO1 и BO1, участков AO2 и BO2, и участков AO3 и BO3, следовательно, отношения сопротивления этих участков равны.

Перерисуем схему в стандартный вид (рис. 11, б). Используя рекуррентный метод, схему можно упростить (рис. 11 в), т.к. сопротивление участка C1F1 равно , аналогично , сопротивление . Тогда общее сопротивление цепи равно



а

б

в
Рис. 11.


Литература

  1. Зильберман А. Расчет электрических цепей // Квант. – 1988. – № 8. – С. 30-34.
  2. Петросян В.Г., Долгополова Л.В., Лихицкая И.В. Методы расчета резисторных схем постоянного тока // Физика. – 2002. – № 14, 18, 22.
  3. Хацет А. Методы расчета эквивалентных сопротивлений // Квант. – 1972. – № 2. – С. 54-59.

 

Выложил alsak
Опубликовано 15.07.07
Просмотров 51732
Рубрика Решение задач
Тема Постоянный ток
Электростатика